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Josephson effect in a Fibonacci quasicrystal

Anna Sandberg ,1,2 Oladunjoye A. Awoga ,3 Annica M. Black-Schaffer ,1 and Patric Holmvall 1,*

1Department of Physics and Astronomy, Uppsala University, Box 516, S-751 20 Uppsala, Sweden
2Department of Physics, Stockholm University, AlbaNova University Center, SE-106 91 Stockholm, Sweden

3Solid State Physics and NanoLund, Lund University, Box 118, 22100 Lund, Sweden

(Received 9 May 2024; revised 16 August 2024; accepted 5 September 2024; published 18 September 2024)

Quasiperiodicity has recently been proposed to enhance superconductivity and its proximity effect.
Simultaneously, there has been significant experimental progress in the fabrication of quasiperiodic structures,
including in reduced dimensions. Motivated by these developments, we use microscopic tight-binding theory
to investigate the DC Josephson effect through a ballistic Fibonacci chain attached to two superconducting
leads. The Fibonacci chain is one of the most-studied examples of quasicrystals, hosting a rich multifractal
spectrum, containing topological gaps with different winding numbers. We study how the Andreev-bound
states (ABS), current-phase relation, and the critical current depend on the quasiperiodic degrees of freedom,
from short to long junctions. While the current-phase relation shows a traditional 2π sinusoidal or sawtooth
profile, we find that the ABS develop quasiperiodic oscillations and that the Andreev reflection is qualitatively
altered, leading to quasiperiodic oscillations in the critical current as a function of junction length. Surprisingly,
despite earlier proposals of quasiperiodicity enhancing superconductivity compared to crystalline junctions, we
do not, in general, find that it enhances the critical current. However, we find significant current enhancement
for reduced interface transparency because of the modified Andreev reflection. Furthermore, by varying the
chemical potential, e.g., by an applied gate voltage, we find a fractal oscillation between superconductor-normal
metal-superconductor (SNS) and superconductor-insulator-superconductor (SIS) behavior. Finally, we show that
the winding of the subgap states leads to an equivalent winding in the critical current, such that the winding
numbers, and thus the topological invariant, can be determined.

DOI: 10.1103/PhysRevB.110.104513

I. INTRODUCTION

Quasicrystals [1–5], and, more generally, aperiodic sys-
tems [6–9] provide fascinating platforms to study exotic and
topologically nontrivial behavior in physics [10–18]. Qua-
sicrystals are neither periodic nor random disordered, but in-
stead quasiperiodic as they exhibit a deterministic long-range
order through discrete scale invariance and a noncrystallo-
graphic rotation symmetry [19–21]. In contrast to randomly
disordered systems, quasicrystals therefore have clearly dis-
tinguished Bragg peaks in diffraction experiments [22,23].
This peculiar combination leads to fascinating spectral and
electronic properties [24–34], such as multifractality with
critical states and wave functions that are neither localized
nor extended [35–37], hyperuniformity [38,39], pseudogaps
[40–43], topological gaps [44–47], and topological invari-
ants that are otherwise only possible in higher-dimensional
systems [48–62].
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The influence of quasiperiodicity on different ordered
states and transport phenomena has also attracted significant
interest [10–17,51,63–68]. For instance, it has recently been
proposed that quasiperiodicity can enhance the superconduct-
ing order parameter and transition temperature [69–73], its
proximity effect [74,75], topological superconductivity [76],
persistent currents in normal metal rings [77,78], and cause
enhanced or anomalous transport phenomena [79–84]. The
enhancement has been directly linked to the underlying topo-
logical [74] and critical states [69–72] of the quasicrystal,
similar to how criticality may enhance superconductivity also
in disordered systems [85–93]. However, while disordered
systems typically exhibit such critical behavior only at the
Anderson localization transition [94,95], critical behavior is
ubiquitous in quasicrystals [96].

From an experimental standpoint, quasiperiodic systems
are also becoming increasingly accessible. Significant
progress in quasicrystal growth [97,98] and synthetic engi-
neering with atomic precision [99–108] have recently enabled
creation of quasiperiodic structures in reduced dimensions
[109–121] and in moiré structures [122–126]. A prime
example is the Fibonacci quasicrystal [17], which is closely
related to the dodecagonal and icosahedral quasicrystals
[110], and hosts a multifractal spectrum of topological gaps
with subgap winding states [60]. Its implementation as a one-
dimensional (1D) atomic chain, the so-called Fibonacci chain,
is also relevant to 3D systems [73] where it naturally appears
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FIG. 1. (a) Tight-binding model of a hybrid superconductor-
quasicrystal Josephson junction, modeled by a Fibonacci chain with
length L and hoppings tA (blue) and tB (orange) at chemical potential
μ, attached via interface hopping tint to two superconducting leads
with hopping tS (black), chemical potential μS, and on-site spin-
singlet s-wave superconducting order parameter �. (b) Fibonacci
hopping structure for the Fibonacci approximant C4 with F4 = 5
bonds. (c) Chain of multiple Fibonacci approximants, i.e., a system
with supercell C4 repeated N = 3 times.

or can be experimentally engineered in, e.g., stacked materials
[127–131]. Synthetic Fibonacci chains have additionally been
realized in the context of photonics [48,50,52,132,133],
phononics [134], polaritonics [135–137], cold atoms [138],
dielectric chains or circuits [139,140], and magnonics [141].
In these systems, the Fibonacci chain spectrum and topology
have often directly been measured [48–62].

Motivated by the experimental timeliness and the pre-
dictions of enhanced superconductivity, we here study the
influence of quasiperiodicity on one of the most techno-
logically important superconducting phenomena, namely the
Josephson effect [142–145]. In particular, we study a non-
superconducting Fibonacci chain of length L attached to two
crystalline superconducting (S) leads using microscopic tight-
binding theory, see Fig. 1(a). Since the Fibonacci chain is
either normal conducting (N) or insulating (I), depending
on if the Fermi level is outside or inside the topological
gaps, respectively, we effectively study both ballistic SNS
and SIS Josephson junctions. Furthermore, we study the
short (ξ0 � L) to the long (ξ0 � L) junction regime, where
ξ0 is the superconducting coherence length [144]. We also
model repeated Fibonacci chain supercells, i.e., so-called
crystal approximants [22], see Figs. 1(b) and 1(c). Overall,
we perform extensive model calculations in these systems
to address whether quasiperiodicity significantly influences
the Josephson effect. Specifically, we systematically study
how each model parameter influences the energy spectrum,
current-phase relation, and critical current, contrasting the
quasiperiodic and crystalline scenarios at each step.

We find that although the Josephson current-phase rela-
tion shows a conventional 2π sinusoidal or sawtooth profile,
the low-energy Andreev-bound states (ABS) are not conven-
tional. Specifically, we demonstrate that the ABS develop a
quasiperiodic probability density, also at perfect resonance.

Importantly, we also show how quasiperiodicity modifies the
condition for zero-energy ABS, which generally generates
the largest critical current [146], associated with the sawtooth
current-phase profile and perfect Andreev reflection (i.e., zero
normal reflection) [147]. We are in fact able to obtain a set
of simple functional forms for this zero-energy condition,
depending on the model parameters and spatial realization
of the Fibonacci chain. We find that the system changes
quasiperiodically between these forms with junction length.
Consequently, we find that the decay of the critical current
with junction length is described by quasiperiodic oscillations,
on top of the traditional power law and exponential decays
found in crystalline junctions [147–150]. These quasiperiodic
oscillations imply significant sample-to-sample fluctuations,
unless the junction is created with atomic precision, possible
with modern STM techniques [118].

Surprisingly, while earlier studies have proposed that
quasiperiodicity can enhance superconductivity and the prox-
imity effect [69–75], we do not find that it generally enhances
the critical current, at least not when compared to an
idealized ballistic crystalline junction with a zero-energy
state. However, beyond this idealized situation, we find that
quasiperiodicity can cause a large enhancement of the critical
current in junctions with poor transmission, because it mod-
ifies the condition for zero-energy ABS. Moreover, we show
that by applying a gate voltage, the junction varies between
SNS and SIS behavior in a fractal manner, as the Fermi level
enters and exits the topological gaps of the quasicrystal en-
ergy spectrum. Finally, we find that when the Fermi level is
inside or close to the quasicrystal energy gaps, the topological
subgap states can carry the majority of the Josephson current,
while their winding leads to a similar winding in the critical
current. We thus demonstrate how the Josephson current can
probe the topological invariant in quasicrystals.

The rest of this paper is organized as follows. In Sec. II, we
describe our model and relevant properties of the Fibonacci
chain. In Sec. III we study how quasiperiodicity influences
the ABS spectrum and current-phase relation. In Sec. IV we
study the important critical current, and how it depends on
the quasiperiodic modulation and interface transparency, the
Fibonacci approximant order, and junction length. In Sec. V
we study the gate voltage dependence and also demonstrate
how the critical current can measure the topological winding
number. The paper is concluded in Sec. VI.

II. MODEL AND BACKGROUND

In this paper we investigate a quasiperiodic Josephson
junction, shown schematically in Fig. 1(a), by numerically
simulating a nonsuperconducting quasiperiodic chain at-
tached to two crystalline superconducting leads [151]. We
model this system via the Hamiltonian

H = HQ + HS + HT, (1)

where HQ captures the quasiperiodic (Q) nonsuperconducting
part arranged as a Fibonacci chain as described in Secs. II A
and II B, while HS and HT capture the superconducting (S)
leads and interface tunneling (T), respectively, as described
in Sec. II C.
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A. Fibonacci chain hopping model

In this subsection we define how to construct a Fibonacci
chain, and our tight-binding model to study such a system,
namely the Fibonacci hopping model [17].

A Fibonacci chain is a 1D quasicrystal, which can be
constructed in a similar way to how Fibonacci numbers are
generated [17], but instead of numbers, a Fibonacci chain
can be seen as a string of the letters A and B. A string is
constructed recursively through concatenation, Cn = Cn−1 ⊕
Cn−2, where C0 = B, C1 = A, such that C2 = AB, C3 = ABA,
C4 = ABAAB and so forth. Here, Cn is referred to as the
nth approximant of the infinite Fibonacci chain [17], with its
length given by the corresponding Fibonacci number Fn =
Fn−1 + Fn−2 (n � 2, F0 = F1 = 1). A more generalized Fi-
bonacci chain can be constructed using the characteristic
function [49]

χ j = sgn[cos(2π jτ−1 + φ) − cos(πτ−1)], (2)

where j = 1, 2, 3... is the letter index, τ = (1 + √
5)/2 is the

golden ratio, with χ j = −1 giving the letter A and χ j = 1
gives the letter B. Here, φ ∈ [0, 2π ) is a phase factor referred
to as the phason angle, which is related to the topology of the
Fibonacci chain as discussed in Sec. II B. We set constant φ =
πτ−1 unless otherwise specified, as this value ensures that
terminating the characteristic function in Eq. (2) at the bond
length Fn reproduces the Fibonacci approximant Cn given by
the concatenation rule. In contrast, varying φ from 0 to 2π

leads to successive letter changes called phason flips, which
generates the complete set of Fn + 1 unique Fibonacci chain
realizations of length Fn [17].

In this paper we model a Fibonacci chain using the Fi-
bonacci hopping model via the Hamiltonian

HQ =
∑

σ, j

μc†
jσ c jσ −

∑

σ,〈i j〉
(t〈i j〉c†

jσ ciσ + H.c.), (3)

where μ is the chemical potential, e.g., controlled by an
external gate voltage, c†

jσ (c jσ ) is the creation (annihilation)
operator of electronic states at site j with spin σ , 〈i j〉 denotes
nearest-neighbor sites i and j in the Fibonacci chain with
hopping t〈i j〉 taking one of the two values tA or tB following
the Fibonacci chain, i.e., substituting the letters A 	→ tA and
B 	→ tB following Eq. (2). From here on, tB is our natural unit
of energy. We introduce the hopping ratio ρ ≡ tA/tB where
ρ �= 1 (ρ = 1) corresponds to a quasiperiodic (crystalline)
system. We note that the Fibonacci hopping model is closely
related to the on-site Fibonacci model where an on-site po-
tential instead varies quasiperiodically [17,24,25], with one
main difference being that the Fibonacci number Fn usually
labels the number of bonds (sites) in the Fibonacci hopping
(on-site) model.

We consider two quasiperiodic scenarios. In the first, we
consider Fibonacci chains with length L ∈ [2, 1000]a0 de-
scribed by the characteristic function in Eq. (2) as depicted
in Fig. 1(a), where a0 is the lattice spacing and our natural
unit of length. In the second scenario, we consider Fibonacci
chains consisting of approximants Cn repeated N times as il-
lustrated in Fig. 1(c), thus with physical length L = a0N × Fn

(and N × Fn + 1 sites). In particular, we study such repeated
approximants up to several thousand sites, e.g., L = 2584a0

FIG. 2. Energy spectrum vs hopping ratio ρ (a), chemical po-
tential μ (b), phason angle φ (c), for the Fibonacci approximant
C9 with N = 5 repetitions and open boundary conditions. Vertical-
dashed lines are guides to the eye marking the constant parameter
choice in every other figure. Here, φ0 = πτ−1(Fn + 1) is a constant
to symmetrize the spectrum around π [74]. (d) Normalized num-
ber of energy levels ζ below energy E , with gap labels q for the
largest gaps (shaded), corresponding to the winding numbers in (c).
(e) Probability density |�|2 as a function of φ on site j for the |q| = 4
the winding state [red energy level in (a), (c), (d)]. (f) |�|2 at fixed
φ − φ0 = 1.5π in (e).

for F17 with N = 1, or N = 500 for low Fn, which is several
orders of magnitude longer than both the microscopic length
scale a0 and the superconducting coherence length ξ0 ≈ 17a0

(see Sec. II C). Thus, these nonrepeated and repeated scenar-
ios essentially correspond to quasicrystals and approximant
crystals [22] embedded across two superconducting leads
separated by a distance L, respectively. We note that the
most important features, such as topology and the major gap
structure, remains unchanged with repetition [60,76] (see also
Sec. II B). Furthermore, it is well known that even such finite
quasiperiodic Fibonacci approximants host the most relevant
features of the Fibonacci quasicrystals [17].

B. Fibonacci chain spectrum and topology

To provide a background for the relevant physics of the
Fibonacci chain, we in this subsection discuss its spectrum
and topology.

One of the most remarkable features of the Fibonacci chain
is the opening (closing) of topological gaps at ρ �= 1 (ρ = 1),
as illustrated in Fig. 2(a). We note that here μ = 0 corresponds
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to half-filling, see Fig. 2(b). Interestingly, at ρ �= 1 there is
a topological phase transition with the appearance of edge
modes, see the red subgap state in Fig. 2(a), in analogy with
the dimerized Su-Schrieffer-Heeger (SSH) model [152]. After
all, a repeated Fibonacci approximant Cn can in a sense be
seen as a natural extension of the SSH model to include a
richer sublattice structure, since the lowest-order nontrivial
Fibonacci sublattice C2 = tAtB is similar to the the dimerized
SSH chain. However, there are some important differences,
like how the chain is usually terminated, and that the Fi-
bonacci chain can host multiple topological gaps each with
subgap states, see Fig. 2(b). Furthermore, the exact subgap
energy of the states depend directly on the phason angle
as illustrated in Fig. 2(c). Additionally, the Fibonacci chain
might have edge modes for both ρ < 1 and ρ > 1 in contrast
to the SSH chain, and there are three (two) bands in the limit
ρ → 0 for the Fibonacci (SSH) chain, corresponding to the
existence of three (two) kinds of nearest-neighbor-hopping
neighborhoods.

Each gap of the Fibonacci chain is related to an integer gap
label q according to a gap labeling theorem [44–46], which
states that for the Fibonacci approximant Cn, q is related
to the number of energy levels ζ below the corresponding
gap via ζ = mod[q(Fn−1), Fn] [17]. Figure 2(d) visualizes the
gap labeling theorem for the C9 approximant, and we note
that the gap size is usually inversely proportional to the gap
label [46,47].

It was recently proposed [48] that the gap label q is equiva-
lent to a Chern number and that the Fibonacci hopping model
is topological equivalent with the 1D Aubry-André-Harper
(AAH) model [153–155] and the 2D integer quantum Hall
system [49,53,54]. However, this interpretation has been dis-
puted [156]. Regardless, the Fibonacci chain has edge states
which wind across the quasicrystal gaps labeled q, with cor-
responding winding number q. However, the states wind as a
function of the phason angle φ, not momentum as in crys-
talline systems. Specifically, as φ varies from 0 to 2π , the
edge states wind inside the gap |q| times with direction sgn(q)
as shown in Fig. 2(c). Because of the discrete nature of the
characteristic function in Eq. (2), there are Fn + 1 unique val-
ues (or phason flips) for the approximant Cn, which explains
the step-like appearance of the energy levels in Fig. 2(c).
Finally, we note that the real-space localization of the winding
state changes with φ, such that the state winds back and forth
across the chain |q| times as shown in the probability density
in Fig. 2(e). Recently, this was experimentally realized as
topological pumping of the edge modes in photonic [52] and
polaritonic [137] systems. Figure 2(f) shows a cut at fixed φ,
demonstrating that the spatial dependence of the edge modes
is not extended or exponentially localized, but rather critical
and furthermore with multifractal behavior [17]. The goal of
our paper is to see how the interesting quasiperiodic properties
mentioned above influence the Josephson effect, by systemat-
ically investigating the model and parameter dependencies.

C. Superconductivity and Josephson junction

In this subsection, we describe our tight-binding model for
the superconducting leads and interface. We also show how
we compute the Josephson current and estimate the supercon-
ducting coherence length.

Each superconducting lead is modelled via the effective
mean-field Hamiltonian

HS =
∑

σ, j

μSc†
jσ c jσ −

∑

σ,〈i j〉
(tSc†

jσ ciσ + H.c.)

−
∑

j

[� jc
†
j↑c†

j↓ + H.c.], (4)

with chemical potential μS and hopping tS, sites i and j in
the respective superconducting lead, and where ↑ (↓) denotes
spin up (down) states. We introduce the notation ρS ≡ tS/tB,
and for simplicity mainly to focus on the scenario μS = 0
(half-filling). We consider superconducting leads with NS =
135 sites (we verify that increasing this size does not yield
any noticeable difference on our results), with on-site s-wave
superconductivity via the mean-field order parameter � j .

We model the coupling between the superconducting leads
and the Fibonacci chain via the Hamiltonian

HT = −
∑

σ,〈i j〉
tintc

†
jσ ciσ + H.c., (5)

where tint is the interface hopping between nearest-neighbor
sites 〈i j〉, one in the Fibonacci chain and the other in a su-
perconducting lead as illustrated in Fig. 1(a). We investigate
different values of tint, ρ ≡ tA/tB and ρS ≡ tS/tB as a simpli-
fied way to model different interface transparencies, and note
that this can still be related to results obtained with, e.g., a
scattering-matrix approach [147].

We solve the resulting Hamiltonian H = HQ + HS + HT at
zero temperature using the Bogoliubov-de Gennes method,
using uniform superconductivity in the leads |� j | = �0 =
0.06tB. We verify that self-consistency, capturing the inverse
proximity effect, does not qualitatively modify the results
[157]. We fix the phases in the two superconducting leads
using the phase difference �θ ∈ [0, 2π ) as the relevant phase
parameter. A finite phase difference �θ > 0 leads to a super-
current through the Josephson junction, which we compute
via the bond charge current from site k to j via the current
operator [158]

I jk = e

ih̄

∑

ν,σ

[
t jkuν∗

jσ uν
kσ f (Eν ) − t∗

jkuν∗
kσ uν

jσ f (Eν )
]
, (6)

with elementary charge e, reduced Planck constant h̄, eigen-
vectors u and v, Fermi-Dirac distribution f (Eν ), and ν labels
the eigenstates.

The current contribution from individual energy levels ν

are also obtained via the usual energy-phase dispersion at
zero temperature Iν (�θ ) = −(2e/h̄)(dEν/d�θ ) [159], and
we verify that I (�θ ) = ∑

ν Iν reproduces the same result as
Eq. (6). The critical current Ic is defined as the maximum of
the current-phase relation,

Ic ≡ I (�θc) ≡ max{I (�θ ) : �θ}, (7)

where �θc is the critical phase difference.
Next, we estimate the effective superconducting coher-

ence length in our model system. We consider the commonly
used expression for the ballistic superconducting coherence
length ξ0 = h̄vF/(π�0), with Fermi velocity vF computed
from the normal-state dispersion in the leads (using a single-
band model at half-filling). We obtain ξ0 ≈ 11a0. This value
is slightly smaller but still the same order as obtained through
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fitting the exponential decay of the ABS in the main text (see
Sec. III), where we find ξ0 ≈ 17a0. We use these estimates as
a representative length scale to quantify the normal junction
length L, and for simplicity assume that L is the same as
the effective junction length [144], such that a long (short)
Josephson junction corresponds to L � ξ0 (L � ξ0). Thus,
the short junction limit L � ξ0 essentially corresponds to a
quantum dot (L ∼ a0) in our system. We note that the inter-
esting physics comes from the unique quasiperiodic spatial
dependence, while such a quantum dot has no spatial extent.
Still, for full transparency we consider junctions from single
sites to thousands of sites, covering both the short and long
junction regimes.

Finally, we note that recent studies of a superconductor-
quasicrystal SN interface (i.e., not an SNS or SIS Josephson
junction as in our paper) have shown that the proximity
effect can be enhanced by the quasiperiodicity, because of
the topological states in the quasicrystal [74,75]. Our ear-
lier calculations [151] reproduce these results but in an SNS
Josephson junction. In the current paper, we instead focus
our attention on the ABS spectrum and Josephson current.
Furthermore, Refs. [60,75] have shown that moderate disorder
or impurities do not significantly modify the most crucial
properties of the Fibonacci chain, and we therefore leave such
perturbations as an outlook. Instead, our study focuses on
quantifying the DC Josephson effect in ballistic weak links
with a quasiperiodic normal region described by different
Fibonacci chains with and without finite repetition N , for
different values of the superconducting phase difference �θ ,
hopping ratios ρ and ρS, interface hopping tint, electrochemi-
cal potential μ, and phason angle φ.

III. SPECTRUM AND CURRENT-PHASE RELATION

In order to highlight the influence of quasiperiodicity
on the DC Josephson effect, we in this section study how
the ABS spectrum (E < |�|) and Josephson current depend
on the superconducting phase difference �θ for different
hopping ratios ρ and interface hoppings tint, keeping other
parameters fixed.

Figure 3 shows the low-energy spectrum (a) and Josephson
current-phase relation (b) in a Josephson junction where the
nonsuperconducting region is the Fibonacci approximant C9

for different ρ (line colors) at tint = 0.7tB, ρS = 1, and μ = 0.
We note that all energy levels in Fig. 3(a) are subgap ABS
and that the number of such states is directly related to,
e.g., superconducting gap versus level spacing (or analogously
the superconducting coherence length versus junction length)
[160]. Notably, the crystalline junction (ρ = 1) shows the
usual ABS degeneracy at �θ = 0 and 2π , while the quasiperi-
odic junction (ρ �= 1) shows no such degeneracy. Generally,
the degeneracy can break whenever there is an asymmetry
between left- and right-moving quasiparticle states, for in-
stance related to an asymmetry between the two leads [160].
Here, we find that the broken degeneracy in the quasiperiodic
junction is related to the C9 = tAtBtAtA . . . tBtAtBtA approx-
imant having different local hopping neighborhood at each
superconducting lead whenever ρ �= 1. We verify that the
degeneracy is also broken in other asymmetric approximants,
e.g., C10 = tA . . . tB, while it is conserved in symmetric ap-

FIG. 3. Energy eigenvalues E (a) and supercurrent I (b) as func-
tions of the phase difference �θ between two superconducting
leads contacted by the Fibonacci approximant C9 with F9 + 1 = 56
sites. Parameters are tint = 0.7tB, ρS = 1, μ = μS = 0, �0 = 0.06tB,
where ρ = 1 (ρ �= 1) corresponds to a crystalline (quasiperiodic)
junction.

proximants, e.g., C3 = tAtBtA regardless of ρ (or number of
repetitions N). More generally, we also find conserved degen-
eracy when the characteristic function Eq. (2) is terminated at
a point, which conserves the symmetry between leads (e.g.,
when the number of bonds are Fn − 2). These results illustrate
the important concept of how different Fibonacci chains can
lead to both qualitatively and quantitatively different behavior,
a reoccurring theme throughout our paper.

Next, we focus on the Josephson current in Fig. 3(b), which
in this case is enhanced by quasiperiodicity for all ρ < 1
compared to the crystalline case (ρ = 1). We can explain
this in terms of how the Andreev reflection is modified by
the quasiperiodic hopping asymmetry ρ �= 1, together with
the superconducting hopping ratio ρS and interface hopping
tint, since they effectively model the transmission together.
To start, it is well known that a crystalline junction shows
maximal current at ideal junction transmission (i.e., at perfect
Andreev reflection and thus zero normal reflection), where the
current-phase relation turns into a linear sawtooth profile with
a discontinuity at �θ = π [146]. At this phase difference, the
lowest-energy ABS becomes an exact degenerate zero-energy
state with perfect resonance (i.e., wave-function matching)
[147], also associated with a Jackiw-Rebbi zero mode [161].
But this perfect scenario is in a sense fine-tuned since any
deviation from ideal transmission lifts the zero-energy degen-
eracy [147]. It is reasonable to expect that realistic materials
show a reduced transmission as a result of interface imper-
fections or other effects. Specifically, Fig. 3 corresponds to a
system with noticeably lower transmission for the crystalline
junction ρ = 1 (as modeled by tint = 0.7tB). For such reduced
junction transmission, there is an increased occurrence of nor-
mal reflection instead of Andreev reflection, and the resonance
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FIG. 4. Probability density |�( j)|2 at site j for lowest-energy
ABS, at zero energy with perfect resonance tint = t∗

int (ρ, ρS) (a) and
at finite energy off resonance tint = 0.5t∗

int (ρ, ρS) (b). Vertical lines
are guides to the eye marking the junction interfaces. Other lines are
data (solid) or fits to the data (dashed) in the central region (gray) and
leads (purple). Other parameters are same as in Fig. 3.

is not perfect. As a result, the ABS is shifted to finite energy,
obtaining a smaller and nonlinear phase dispersion, thus yield-
ing a reduced current [162] with the sinusoidal shape seen for
ρ = 1 in Fig. 3(b). The quasiperiodic junction, on the other
hand, instead approaches large current and sawtooth profile
for smaller values of ρ. We note that this can also occur for
larger ρ depending on the other model parameters (which we
show in Sec. IV). Thus, the quasiperiodic hopping asymmetry
modifies the ABS spectrum and condition for an ABS at zero
energy (i.e., because of perfect Andreev reflection), the latter
we denote t∗

int (ρ, ρS) and which we fully quantify for different
quasiperiodic junctions in Sec. IV.

To gain better insight into the lowest-energy ABS, we plot
its probability density |�( j)|2 versus site j in Fig. 4, at zero
energy (perfect resonance) tint = t∗

int (ρ, ρS) (a) and at finite
energy (off perfect resonance) tint = 0.5t∗

int (ρ, ρS) (b). The
ABS shows an exponential localization in the superconduct-
ing lead for the crystalline junction, which we fit in (a) with
|�fit ( j)|2 = |�0|2 exp(− ja0/ξ0), where |�0|2 is the constant
resonant value in the junction. We find an excellent fit for
ξ0 ≈ 17a0. Interestingly, we see that quasiperiodicity causes
the ABS to obtain similar quasiperiodic oscillations as critical
states, but here superposed on top of the otherwise constant
and resonant level |�0|2. Off resonance in (b), the spatial de-
pendence is superposed with microscopic oscillations caused
by wave-function mismatch at the interface, which grow with
|tint − t∗

int|. We note that there is a broken symmetry in |�( j)|2
between the two leads for ρ �= 1, which is most visible in
(b), and which becomes even more obvious for higher-energy
modes (not shown). We verify the above behavior for other
approximants Cn both with and without repetition N .

Finally, we comment that the ABS degeneracy and current-
phase relation studied above can be significantly altered in
crystalline junctions by microscopic effects, e.g., with a zero-
energy state existing already in the normal state because of
symmetry [160], which can result in a sawtooth current-phase
profile for all interface transparencies. In Appendix A we in-
vestigate these effects in the presence of quasiperiodicity, and
find that such a robust sawtooth profile is either maintained or
broken depending on the quasiperiodic approximant structure.

IV. CRITICAL CURRENT

Having established the influence of quasiperiodicity on the
ABS spectrum and current-phase relation in Sec. III, we next
look to its influence on observable features like the critical
current. In particular, we here quantify how the critical cur-
rent Ic defined in Eq. (7) depends on the hopping parameters
in different approximants Cn with and without repetition,
and in more general quasiperiodic junctions of length L as
modeled by the characteristic function in Eq. (2). We fur-
ther determine the functional form of the condition t∗

int (ρ, ρS)
for the emergence of a zero-energy ABS, which we use to
analyze several emergent features. Finally, we compute the
critical current as function of junction length and find that
it exhibits quasiperiodic oscillations superposed on the usual
decay found in crystalline junctions. While some of the pa-
rameter dependencies considered in this section may not be
tunable in solids (although they might be in certain atomically
engineered chains or synthetic quasiperiodic metamaterials
[163–167]), our theoretical model calculations serve to estab-
lish the fundamental influence of the quasiperiodic hopping
modulation on the critical current.

A. Zero-energy ABS and critical current

In order to determine the influence of quasiperiodicity on
observable features, we start by studying how the lowest-
energy ABS and the critical current vary with tint and ρ. We
then also vary ρS to fully quantify the condition t∗

int (ρ, ρS)
for the emergence of zero-energy ABS. We show that the
condition t∗

int (ρ, ρS) changes its functional form for different
Fibonacci approximants and junction lengths, leading to qual-
itatively different behaviors for the critical current compared
to crystalline junctions.

We start by studying the dependence of the spectrum and
critical current on tint and ρ. In particular, Fig. 5 shows the
energy eigenvalue of the ABS closest to zero energy Emin (a)
and the critical current Ic (b) as functions of tint for different ρ

(line colors), in a junction described by the Fibonacci approx-
imant C9. Here, it is important to note that the regime tint > tB
may be as reasonable as tint < tB since there are two hopping
terms in the Fibonacci chain (tA and tB) and another in the
superconducting leads (tS), which might be quite dissimilar.
In particular, we verify that the most important results in the
following discussion are valid when, e.g., tB < tint � tS, tA. In
Fig. 5(a) Emin approaches zero at a specific tint = t∗

int (ρ, ρS)
owing to perfect Andreev reflection [147], correlating with the
maximal critical current in Fig. 5(b). We find that the current
is fully carried by the lowest-energy state at these extrema
caused by zero contribution from all other states, and that
the current-phase relation becomes a sawtooth profile (not
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FIG. 5. Energy of lowest-energy ABS (Emin) (a) and critical cur-
rent Ic (b) as functions of interface hopping tint for different hopping
ratios ρ (line colors), at the critical phase difference �θ = �θc for
the Fibonacci approximant C9. Parameters are μ = 0, ρS = 1. Ver-
tical dashes are guide to the eye indicating the overlapping extrema
between (a) and (b).

shown). In contrast, away from the extrema in Emin and Ic,
the energy-phase slope reduces and the current-phase relation
becomes sinusoidal, where other states also start contributing
destructively. Interestingly, Fig. 5 illustrates that for tint < tB
(tint > tB), quasiperiodicity can significantly enhance the cur-
rent for most ρ < 1 (ρ > 1) as compared to the crystalline
junction with ρ = 1, i.e., without any parameter fine-tuning.

To understand the behavior in Emin and Ic, we simultane-
ously vary ρ, ρS, and tint and find that t∗

int (ρ, ρS)/tB = ρ
√

ρS

for the C9 approximant, see Appendix B for calculation de-
tails. This is consistent with the positions of the extrema (e.g.,
t∗
int/tB ≈ 1 for ρ = ρS = 1) up to a small deviation, which we

attribute to corrections in powers of |�|/tB, i.e., vanishing for
|�| � tB, tA, tS [147]. We proceed to quantify the condition
t∗
int (ρ, ρS) in Table I for different Fibonacci approximants

up to C17 where the junction length L = a0Fn is more than
two (three) orders of magnitude larger than the coherence
length ξ0 (atomic scale a0). We find that in junctions with
even number of sites, t∗

int (ρ, ρS) is described by one of three
functional forms ρ

√
ρS,

√
ρ
√

ρS,
√

ρS, thus always scaling as
∝√

ρS. Thus, we find qualitatively different behavior from in
crystalline junctions, where it is known that a normal region
with a single hopping tA scales as t∗

int (tA, tS) = √
tAtS in the

limit |�| � tA, tS [147]. Furthermore, in the junctions with
odd number of sites (i.e., every third approximant), there is
already a zero-energy ABS in the normal state [160], and we
here let t∗

int (ρ, ρS) denote for which ρ and ρS the state remains
at zero energy. Thus, we find a zero-energy ABS ∀tint, ρS for
ρ = 1 (and ∀ρ, ρS at tint → 0) as described in Appendix A.

Next, we note that t∗
int (ρ, ρS) in Table I varies cyclically in

n as we go to higher approximants Cn. To better highlight this
cycle, we write the condition for zero-energy ABS explicitly

TABLE I. Condition t∗
int (ρ, ρS) for emergent zero-energy ABS

for different Fibonacci approximants Cn. Second column is the
number of sites Fn + 1 (i.e., with physical length L = a0Fn). Third
column is the corresponding hopping structure in the Fibonacci
chain, focusing on the first and last bond, i.e., closest to the
superconductor-Fibonacci chain interfaces.

Cn Fn + 1 (#sites) bond structure t∗
int (ρ, ρS)/tB

C0 2 tB
√

ρS

C1 2 tA
√

ρ
√

ρS

C2 3 tAtB ρ = 1, ∀ρS

C3 4 tAtBtA ρ
√

ρS

C4 6 tAtBtAtAtB
√

ρ
√

ρS

C5 9 tA . . . tA ρ = 1, ∀ρS

C6 14 tA . . . tB
√

ρS

C7 22 tA . . . tA
√

ρ
√

ρS

C8 35 tA . . . tB ρ = 1, ∀ρS

C9 56 tA . . . tA ρ
√

ρS

C10 90 tA . . . tB
√

ρ
√

ρS

C11 145 tA . . . tA ρ = 1, ∀ρS

C12 234 tA . . . tB
√

ρS

C13 378 tA . . . tA
√

ρ
√

ρS

C14 611 tA . . . tB ρ = 1, ∀ρS

C15 988 tA . . . tA ρ
√

ρS

C16 1598 tA . . . tB
√

ρ
√

ρS

C17 2585 tA . . . tA ρ = 1, ∀ρS

in terms of tA and tB starting with C3 where t∗
int (tA, tB) ∝√

tAtA, then
√

tAtB in C4, at tA = tB in C5,
√

tBtB in C6,
√

tBtA
in C7, and finally at tA = tB in C8, after which the cycle repeats
from C9. Thus, the cycle corresponds to an equal occurrence
of each of these scenarios, or, in other words, all the possible
permutations with tA and tB under the square root. Further
in-depth analysis is left as an outlook. Instead, we empha-
size that the main point of the above analysis and results is
to illustrate that different approximants exhibit qualitatively
different behavior for the zero-energy ABS (and thus the An-
dreev reflection) because of their different hopping structures.
This naturally also leads to qualitatively different behaviors
for the critical current, which we demonstrate below, first for
junctions with even number of sites then for those with odd
number of sites.

Figure 6 shows the critical current as a function of tint

through the C10 junction with t∗
int (ρ, ρS) = √

ρ
√

ρS (a) and
through the C12 junction with t∗

int (ρ, ρS) = √
ρS (b). These

cases show smaller or no spread in Ic with ρ, respectively,
as compared to C9 with linear scaling ρ

√
ρS in Fig. 5(b).

We also note that there is still a variation in the peak val-
ues for different ρ in Fig. 6(b), which we find to be caused
by how ρ changes the slope of the energy-phase disper-
sion. Furthermore, we point out that quasiperiodicity can still
influence the spread of the peaks in the C12, since it still
varies with tB, but here we keep tB fixed, as the unit of
energy. Thus, allowing the hopping tB to vary in the model
calculations can lead to t∗

int (tA, tB, tS) being proportional to,
e.g., tB or

√
tB.

Next, Fig. 7 shows Ic as function of tint in junctions with
odd number of sites, corresponding to the approximant C9

repeated N = 2 times (a) and the approximant C8 without
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FIG. 6. Same as Fig. 5(b) but for C10 with t∗
int (ρ, ρS) = √

ρ
√

ρS

(a) and C12 with t∗
int (ρ, ρS) = √

ρS (b).

repetitions (b). Focusing first on the repeated C9 approximant
in Fig. 7(a), the critical current here shows a smooth variation
with tint for every ρ. This is related to how varying tint and
ρ does not alter the functional form of the energy-phase dis-
persion of the lowest-energy ABS, and thus not the sawtooth
current-phase relation, since there is always a zero-energy
state (see Fig. 14). Instead, tint and ρ only slightly alters the
slope coefficient. As a result, there is only a small differ-
ence in Ic between different ρ close to the maxima in Ic,
i.e., the effect of quasiperiodicity is small, while quasiperi-
odicity has a slightly more noticeable effect far from the
maxima (i.e., when normal reflection becomes significant).

FIG. 7. Same as Fig. 5(b) but for junctions with odd number of
sites, for C9 with N = 2 repetitions (a) and C8 without repetitions (b).

This contrasts with the C9 approximant without repetition
in Fig. 5(b), where the sharp peak is caused by a rapid
decrease in phase dispersion because of the transition from
linear energy-phase slope to nonlinear slope. Comparing these
scenarios with and without repetitions further, we note that
the maximum in Ic occur at exactly the same tint. We explain
this by noting that the two scenarios share the exact same
local hopping structure close to each interface, resulting in the
exact same wave-function matching criterion underlying the
peak location.

Next, we note that for the C8 approximant in Fig. 7(b),
Ic also varies smoothly with tint at fixed ρ, again related to
how tint influences the slope of the energy-phase dispersion. In
contrast to (a), however, the zero-energy degeneracy is broken
for all ρ �= 1 causing a significant reduction of the critical
current (see Fig. 15), such that the crystalline junction with
ρ = 1 always has a larger critical current.

Next, we briefly summarize how the condition for zero-
energy ABS behaves in more generalized quasiperiodic
junctions modeled by the characteristic function in Eq. (2),
for different lengths L ∈ [2, 200]a0 (see Appendix B for cal-
culation details). We find that junctions with odd number of
sites follow the same behavior as either Figs. 7(a) or 7(b),
i.e., with a robust zero-energy mode ∀ρ, or only when ρ = 1,
respectively. In junctions with even number of sites, we find
that the condition t∗

int (ρ, ρS) always scales as ∝√
ρS, while

the scaling in ρ varies between different rational exponents,
e.g., ρ3/2, ρ,

√
ρ, 1/

√
ρ, and 1/ρ. Interestingly, we find that

as L increases, the system varies between the conditions in
a quasiperiodic manner similar to how the hopping structure
evolves with L. This is also consistent with the approximants
Cn, where the change in the functional form of t∗

int (ρ, ρS) is
cyclic in n, and therefore quasiperiodic in L following the
Fibonacci numbers, since L = a0Fn.

Finally, we note that a deeper explanation for the exact
analytic forms in t∗

int (ρ, ρS) presented in this subsection is
beyond our numeric calculations. However, the quasiperiodic
evolution indicates that the condition for perfect Andreev re-
flection relates nontrivially to the local quasiperiodic hopping
structure close to the superconductor-Fibonacci chain inter-
faces. We therefore propose studies based on other methods as
an interesting outlook to shed additional light on this behavior,
e.g., using perturbation expansion or renormalization group
theory [60].

B. Critical current versus junction length

The previous Sec. IV A demonstrated a nontrivial behavior
in the critical current for different approximants and thus
different junction lengths. Generally speaking, the critical cur-
rent decays with junction length since the Josephson effect is a
mesoscopic effect relying on phase coherence being mediated
across the junction, via finite wave function overlap between
the two superconducting leads [148]. In this subsection, we
study how this decay is influenced by quasiperiodicity from
L ∼ a0 � ξ0 to L = 1000a0 � ξ0, thus varying from the
short to long junction limit. We start with the case of the
repeated Fibonacci approximants Cn with L = a0N × FN (i.e.,
relevant for the crystal approximants [22]), followed by the
nonrepeated Fibonacci chain with more general L modeled
by the characteristic function (2) (i.e., more relevant for the
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FIG. 8. Critical current Ic as function of junction length L =
a0N × F9 at fixed ρ = 0.8 (a) and fixed tint = 0.8tB (b). Here ξ0 ≈
17a0, and the junction is the Fibonacci approximant C9 repeated N
times.

Fibonacci quasicrystals [17]). Although modern experimen-
tal techniques allow the fabrication of materials with atomic
precision [99–108], the main purpose of this section is to theo-
retically establish how quasiperiodicity influences the overall
trend Ic(L).

Beginning with a junction corresponding to a repeated Fi-
bonacci approximant, Fig. 8 shows Ic as a function of L for the
approximant C9 at fixed ρ = 0.8 (a) and at fixed tint = 0.8tB
(b). The critical current shows an overall decrease with L as
expected, but is superposed with a staggered behavior because
of the microscopic even-odd effect described in Appendix A.
Specifically, odd number of sites (even repetitions) lead to
a robust zero-energy state, which significantly increases the
critical current, while for even number of sites there is only a
zero-energy state at perfect Andreev reflection [147], i.e., here
at t∗

int (ρ, ρS) = ρ
√

ρS. Thus, the scenario tint/tB = ρ = 0.8 at
ρS = 1 in Fig. 8(a) signifies the maximum possible critical
current, yielding an envelope (purple-dash-dotted line) of all
other curves. In (b) the curve for tint/tB = ρ = 0.8 is only
the maximum at even number of sites since the system with
odd number of sites generally favors larger ρ > tint/tB [see
Fig. 7(a)]. We verify that other Fibonacci approximants follow
a similar staggered behavior, with an envelope curve given
by the corresponding t∗

int (ρ, ρS) expression given by Table I.
The exception to this behavior is the Fibonacci approximants,
which always have an odd number of sites (i.e., every third
approximant), as we demonstrate in Fig. 9 for the approximant
C8. This approximant thus lacks the even-odd staggering,
only illustrating the overall decay of Ic with increased L. The
current is maximal for ρ = 1 and tint = tB where there is a
degenerate zero-energy ABS, while any other ρ �= 1 splits the

FIG. 9. Same as Fig. 8 but for C8 approximant, which always has
an odd number of sites regardless of repetition.

ABS to finite energies thus reducing the current (see Fig. 15).
Interestingly, by comparing the curves in Fig. 9(b) we find
for ρ �= 1 a rapid decay that is approximately exponential and
corresponds to the contribution from the finite-energy modes.
For ρ = 1, this is superposed with a long ∝1/L tail owing
to the zero-energy ABS, which is a well-known behavior in
crystalline junctions [147–150].

Next, we study the critical current decay in the more
general quasiperiodic junctions without repetitions and of
arbitrary length L, by adding one site at a time following
the characteristic function (2). We note that the crystalline
junction in this case obtains an extreme oscillation because
of the even-odd effect. To improve visibility, we therefore
plot the crystalline results for even and odd number of sites
separately. We also note that each Fibonacci approximant Cn is
represented exactly once, i.e., when L = a0Fn, and we verify
that this reproduces the result above. Figure 10(a) shows Ic

as function of L for a crystalline (quasiperiodic) junction as a
dashed (solid) line, whereas Figs. 10(b) and 10(c) are zooms
of (a) at L < 200a0 and L > 200a0, respectively. We begin by
focusing on the crystalline results ρ = 1, where even (odd)
number of sites is shown as a black (gray) dashed line, again
showing the well-known monotonic decay [147–150]. The
junction with odd number of sites has a significantly higher
critical current since it is an idealized scenario with an exact
zero-energy state as �θ → π . The junction with even number
of sites approaches this curve as tint → t∗

int (ρ, ρS), because it
also achieves a zero-energy state.

In the quasiperiodic junction ρ �= 1, Fig. 10 also illustrates
an overall decay in Ic with L, but the microscopic oscillations
are much less trivial, going beyond just an even-odd effect. We
find that these oscillations are not random or erratic; rather,
they correlate with how the junction varies between different
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FIG. 10. (a) Critical current Ic as a function of junction length L
for a Fibonacci chain (solid) modeled by the characteristic function
(2) at ρ = 0.8, tint = 0.8tB and ρS = 1. Dashed-black (gray) line is
same but for a crystalline junction ρ = 1 with even (odd) number of
sites. Panels (b) and (c) show zooms of (a) in different regions.

expressions t∗
int (ρ, ρS) as a function of L. We illustrate this

Fig. 11 by plotting Ic as a function of L with data points
colored according to their functional form of t∗

int (ρ, ρS) (as
given by Table II in Appendix B). The figure thus shows that
all data points with t∗

int (ρ, ρS) being, e.g., ρ
√

ρS,
√

ρ
√

ρS, or√
ρS, each follow their respective monotonic decay as indi-

cated by the dashed lines, except for the purple curve (see
discussion further below). We have fitted these monotonic
decays and find that they are similar to the well-known ex-
ponential and power-law decays in the crystalline junctions,
depending on system and parameter regimes [147–150]. The
data points without dashed lines follow a similar trend, but
these points are fewer and farther between, and we therefore
omit plotting their lines for the sake of clarity. Comparing the
curves for the different hopping parameters in (a) and (b),
the lines are shifted with respect to each other since Ic is
maximal at t∗

int, e.g., the red line has higher Ic than the blue
one in (a) since tint is closer to ρ

√
ρS than

√
ρS, and vice

versa in (b). Next, we comment on the spatial shape of the
microscopic oscillations. Interestingly, the junction changes
the functional form of t∗

int (ρ, ρS) with L in a quasiperiodic
manner, as discussed in Sec. IV A and Appendix B, such that
the critical current Ic(L) also varies in a quasiperiodic way.
This conclusion is based on studying the first 200 values of
L in the characteristic function, and the first 18 approximants
Cn. The exception to this behavior are the purple data points,
which instead show oscillations around a monotonic decay.
These data points correspond to instances where quasiperi-
odicity breaks the zero-energy degeneracy, and we attribute

FIG. 11. Same as Fig. 10(b) but for the quasiperiodic junction at
ρ = 0.8, tint = 0.8tB (a), and at ρ = 1.2, tint = 0.8tB (b). Data points
(markers) are grouped by even or odd number of sites, and by the
condition for zero-energy ABS, as given in Table II in Appendix B.
Dashes are guide to the eye showing the trend Ic(L) for the data points
within the most populated groups.

the oscillations to variations in the size of the finite-energy
shifts. We propose that studying the Andreev reflection ampli-
tudes (i.e., with a scattering-matrix approach) might provide
additional insight into these oscillations, but leave it as a
future outlook.

Finally, we briefly comment on how the overall magnitude
of Ic compares between the quasiperiodic and crystalline junc-
tions, when varying tint ∈ [0.1, 1.0]tB, ρ ∈ [0.1, 1.4] and L ∈
[2, 1000]a0. If taking the idealized scenario for odd number of
sites into account, we find that the crystalline junction quite
generally shows a higher critical current than the quasiperi-
odic junction except in a few cases, since the crystalline
junction is ideal with perfectly ballistic extended states and
exactly degenerate ABS. However, if this idealized scenario
with odd number of sites is not taken into account (in either
the quasiperiodic or crystalline junctions), then the quasiperi-
odic junction can host a significantly higher critical current
than the crystalline junction by several factors, especially at
low tint. Overall, we find microscopic quasiperiodic oscilla-
tions present in Ic(L), indicating significant sample-to-sample
fluctuations in an experimental setup, while beyond these
oscillations the current shows the same overall decay as in
the crystalline scenario.

V. FRACTAL GAP STRUCTURE
AND TOPOLOGICAL INVARIANT

So far, we have considered a system at half filling
through fixed chemical potential μ = 0 and with fixed phason
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angle φ = πτ−1, at which the system behaves as a hy-
brid SNS Josephson junction. The purpose of this section is
to investigate how the Josephson effect is influenced by
quasiperiodicity when varying μ, i.e., varying an applied gate
voltage in an experimental setup, as well as by the topological
gaps and winding states of the Fibonacci chain. In particular,
in Sec. V A we demonstrate that varying the gate voltage leads
to a controlled SNS to SIS transition as the Fermi level enters
the gaps of the Fibonacci chain. Then, we show in Sec. V B
how the winding of the subgap states in the different gaps
lead to distinct oscillations in the critical current Ic, such that
each winding number (i.e., gap label) can be determined, thus
effectively measuring the topological invariant. This occurs
when the Fermi level is located inside or close to the respec-
tive gap, thus accessible by tuning the applied gate voltage.

A. Gate-voltage tuning: Fractal SNS to SIS transitions

So far, most of our paper has centered on systematic
model calculations to establish a fundamental theoretical un-
derstanding of the Josephson effect in quasiperiodic junctions.
While some of the model parameters investigated may not
be tunable in situ in an experiment once the device has
been fabricated, our calculations still provide important fun-
damental understanding of the influence of the quasiperiodic
modulation. Here, we study the influence of the chemical
potential μ, as envisioned by the application of a gate volt-
age to the nonsuperconducting part of the junction. Such
a gate voltage is highly accessible in experiment, and our
following results predict that it should lead to tunable, and
directly observable, fractal oscillations between SNS and
SIS behavior.

Figure 12(a) shows the critical current through a junc-
tion with even (odd) number of sites Fn + 1 = 56 (57) as
solid (dashed) lines, for both a quasiperiodic (thick lines) and
crystalline (thin lines) junction. Figure 12(b) shows the same
but for the C9 approximant repeated N = 5 times (276 sites)
leading to an overall lower current, and where the Fibonacci
gaps are shown as shaded regions [not shown in (a) for
visibility reasons]. We note that these are the correspond-
ing gaps occurring at finite energy at μ = 0, i.e., a gap
around E = E1 at μ = 0 occurs around E = 0 at μ = E1

[see Fig. 2(b)]. To show this correspondence and the winding
number q in each gap, we plot, in Fig. 12(c), the phason angle
φ versus energy spectrum.

Focusing first on the crystalline scenario ρ = 1, we note
that the sharp peaks in Ic in Figs. 12(a) and 12(b) are caused
by the idealized sharp and discrete energy levels at zero tem-
perature, i.e., occurring whenever an energy level crosses zero
energy as function of μ. The peak repetition is thus given by
the level spacing, and the even-odd effect is explicitly seen by
the staggering of the peak position between the junction with
even and odd number of sites, also related to the degeneracy
in the ABS spectrum [160]. In a less idealized system, we
expect the peaks to be broadened such that the variation of Ic

with μ is much smoother. Apart from these sharp peaks, the
critical current shows an overall reduction from half-filling
(μ = 0) towards the band edges (|μ| ≈ 2tB) beyond which
the junction becomes insulating and the current vanishes. The

FIG. 12. (a) Critical current vs chemical potential μ in junctions
with 56 sites (solid), i.e., the C9 approximant, and 57 sites (dashed),
for both quasiperiodic ρ = 0.8 (thick) and crystalline hoppings ρ =
1 (thin). Here, ρS = 1 and tint = 0.81tB ≈ t∗

int (ρ, ρS), while μ = 0
corresponds to half-filling. The peaks in Ic correspond to the discrete
level spacing. (b) Same but for the C9 approximant repeated N = 5
times. Shaded regions show the location of topological gaps of the
repeated Fibonacci chain when isolated (tint = 0, � = 0). (c) Phason
angle-energy spectrum of the isolated Fibonacci chain in (b) illus-
trating the winding in each corresponding gap.

critical current is symmetric around μ = 0 and we therefore
only show results for μ > 0.

Next, we focus on the quasiperiodic scenario ρ �= 1 and
note the same features with peaks and overall larger cur-
rent close to half-filling (but lower bandwidth |μ| < 1.8tB).
Importantly, however, the quasiperiodic gap structure is di-
rectly probed by a sudden drop in current as the Fermi level
enters the quasiperiodic gaps �Q. We find that the size of
these gaps relative to the proximitized superconducting gap
|�| determines the junction behavior. In particular, inside the
larger gaps (�Q > |�|) we observe SIS behavior with the
current becoming orders of magnitude smaller than outside
the gaps, where SNS behavior is observed instead. Inside the
smaller gaps (�Q < |�|) the behavior strongly depends on
the junction length. For instance, in the shorter junction in
Fig. 12(a) the current is still the same order of magnitude as
outside the gaps because of pronounced ABS and supergap
contributions, and thus of SNS type, but the gaps still cause
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a reduction or even complete absence of some peaks that are
otherwise present in the crystalline junction. In contrast, in
the longer junction in Fig. 12(b), the current is more strongly
suppressed in the small gaps, showing more SIS-type behav-
ior. Thus, the gap ratio �Q/|�| together with the Fibonacci
chain length can qualitatively alter the junction properties,
and the SNS to SIS transitions in μ are fractal since the
Fibonacci spectrum itself is fractal [17]. We note that the
gap ratio was recently shown to be also important for both
emergent topological superconductivity [76] and intrinsic
superconductivity [73].

Finally, we briefly comment on the overall magnitude of
Ic in quasiperiodic versus crystalline junctions when vary-
ing tint ∈ [0.1, 1.0]tB, ρ ∈ [0.1, 1.4], and μ between the band
edges. Similar to Sec. IV B, we find that the crystalline junc-
tion in most cases has a higher critical current caused by the
idealized perfect ballistic model with an exact zero-energy
state. Only in a few parts of the parameter space does the
quasiperiodic junction provide a significantly higher Ic than
the crystalline junction, usually when tint is closer to the
quasiperiodically modified expression for t∗

int (ρ, ρS), or when
tint is small and ρ is large.

B. Phason angle dependence and topological invariant
from critical current

In the previous Sec. V A we investigated the behavior of
μ on Ic, demonstrating that the junction can change between
SNS and SIS behavior whenever the Fermi level enter the
largest topological gaps of the Fibonacci chain. In this section,
we show how the critical current can measure the winding
number in each of these gaps. We begin by studying the
influence of the phason angle φ, in order to better under-
stand and quantify how phason modes influence the Josephson
physics. Similar to phonons, phason modes propagate through
quasiperiodic materials where they induce phason flips [17],
and we demonstrate that they have quantifiable influence on
the critical current. We then describe the principle idea be-
hind connecting the winding number to the critical current,
followed by our results and proof-of-principle. Beyond pro-
viding a theoretical understanding of the influence of phason
modes, these results could be measured, e.g., by using STM
techniques [103,106,118], to fabricate an ensemble of junc-
tions each with a different phason angle, or exciting phason
modes, or realizing an effective Fibonacci hopping model in
a metamaterial [163–167] with quantum dots where phason
flips are induced by in situ tuning the the coupling between
the quantum dots.

As shown in Fig. 12(c), the subgap states in the Fibonacci
chain wind across the gap with the phason angle φ [17] (see
also discussion in Sec. II B). Our idea to measure the wind-
ing is based on the observation that the closer these states
wind to the Fermi level, the stronger their contribution is to
the current-phase relation, and thus to the critical current.
Specifically, by tuning the chemical potential close to a gap
with winding number |q|, the variation with φ in the spectrum
comes predominantly from the winding state, since all other
states in comparison show no significant winding (per defini-
tion) and therefore have a constant contribution as function
of φ. Furthermore, the winding state is at its closest and

FIG. 13. (a) Critical current Ic as a function of phason angle φ

in a C9 junction (no repetition) with tint = tB, ρ = 0.8, ρS = 1, when
the chemical potential μ lies inside a gap of the Fibonacci chain, and
(b) outside the gaps. (c) Power spectrum P of Ic (solid) of (a) scaled
to show the integer number of periodic cycles p (as φ varies from 0
to 2π ), thus corresponding to the winding number |q| of each gap,
p = |q| (dashed). (d) Power spectrum of (b) and Fibonacci numbers
Fn (dashed). N is a normalization constant.

furthest from the Fermi level exactly |q| times. The conjecture,
therefore, is that this should produce |q| periodic oscillations
in the current. We note that this should also be observable in a
small region outside the gap.

To verify the conjecture that the winding numbers |q| ap-
pear in the critical current, we plot in Fig. 13(a) Ic as a function
of φ at several μ (line colors) inside the topological gaps,
clearly illustrating that Ic oscillates periodically p times as
φ varies from 0 to 2π . In contrast, Fig. 13(b) illustrates that
when μ is between the gaps there is no single distinct oscil-
lation frequency [see Fig. 12(c) for gap locations]. To more
clearly highlight the periodic oscillations in Ic, we compute
the power spectrum P via the discrete Fourier transform F
with respect to φ

P(μ) = |Fφ[Ic(φ,μ)]|2, (8)

which we normalize with N = ∑
p P(μ). We also subtract

the mean critical current to avoid the trivial peak at p = 0
in the power spectrum, but refrain from further signal pro-
cessing operations (e.g., windowing). Figure 13(c) shows the
power spectrum as a function of the number of completed
periodic cycles p when μ is inside the gaps (solid), illustrat-
ing a single well-defined peak corresponding to the expected
winding number, p = |q| (dashed-vertical lines). Barely vis-
ible are additional peaks mainly at integer multiples of the
main peak frequency, e.g., spurious peaks caused by the dis-
crete Fourier transform. In contrast, Fig. 13(d) shows that
there is no single well-defined peak in the power spectrum
when μ is outside the gaps; instead there are a number
of small peaks of roughly equal size. Coincidentally, we
note that these peaks occur at the Fibonacci numbers Fn ∈
{1, 2, 3, 5, 8, 13, . . .}, with additional smaller peaks at integer
multiples of these “Fibonacci peaks” because of the discrete
Fourier transform. We consistently find these Fibonacci peaks
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at other values of μ and for other junctions (see further below),
but have no clear explanation for their appearance, other than
that the Fibonacci numbers and golden ratio have a tendency
to appear throughout various quantities in the Fibonacci chain
[17,74]. Next, we note that when the Fermi level lies in the
middle of the largest gaps (|q| = 1, 2, 3), Ic vanishes when
the state lies at the gap edge, while Ic is finite when the
winding state is inside the gap, see for instance μ = 1.57tB
for the |q| = 3 gap in Fig. 13(a). These scenarios correspond
to situations when either no state or only the winding state is
close to the Fermi level, respectively, demonstrating that the
topological winding states can fully carry the critical current.

Finally, the above results and conclusions hold more gen-
erally for other parameter ranges and approximants, as we
demonstrate and discuss in Appendix C.

VI. CONCLUDING REMARKS

We study the influence of quasiperiodicity on the
DC Josephson effect, by considering a ballistic hybrid
superconductor-quasicrystal-superconductor Josephson junc-
tion. We consider the Fibonacci chain as a quasicrystal
model system, from the short junction limit with just a few
atomic sites, to the long junction limit with several thou-
sand sites. Furthermore, we study Fibonacci chains both
without and with repetition, thus essentially modeling both
quasicrystals and their approximants [22], embedded across
two superconducting leads. As potential experimental realiza-
tions of these models, we propose a quasiperiodic engineered
atomic chain [119] or metamaterial [163–167], or moiré struc-
ture [122–125], embedded across two bulk superconductors.
Alternatively, we propose a 3D generalization with super-
conductors sandwiching a Fibonacci superlattice [127–131],
consisting of 2D periodic lattices stacked according to the Fi-
bonacci sequence along the third dimension [127–131] along
which a Josephson current is applied. It was recently shown
that superconductivity in the 1D Fibonacci chain extend to
such a 3D scenario [73].

We study the Josephson effect via the low-energy ABS
spectrum, current-phase relation, and critical current. We
exhaustively investigate how these depend on the supercon-
ducting phase difference, quasiperiodic degrees of freedom,
hopping parameters, chemical potential, and junction length.
We find that, although the current-phase relation is still
2π periodic, with either a sinusoidal or sawtooth profile,
quasiperiodicity leads to ABS with quasiperiodic oscillations
in their probability density, also at perfect resonance. Impor-
tantly, we find that quasiperiodicity qualitatively modifies the
condition for emergent zero-energy ABS and maximal critical
current. We demonstrate that this condition changes between
a few simple functional forms in a quasiperiodic manner as
the junction length increases. Consequently, we find that the
critical current shows quasiperiodic oscillations as a function
of junction length, on top of the monotonic decay also found
in crystalline junctions [147–150]. Based on these results we
conclude that there might be large sample-to-sample fluctua-
tions between different quasiperiodic junctions, depending on
the microscopic details.

Surprisingly, despite proposals for quasiperiodicity en-
hancing superconductivity and the proximity effect [69–76],

we find that the critical current is not generally enhanced by
quasiperiodicity, especially compared to a crystalline junc-
tion in the perfect ballistic limit and with a zero-energy
state. However, beyond this idealized scenario, we find that
quasiperiodicity can significantly enhance the critical current,
especially at reduced coupling to the superconducting leads.

We find that by varying the chemical potential in the junc-
tion, the junction changes between SNS and SIS behavior
in a fractal manner, because of the intrinsic fractal energy
spectrum and topological gap structure of the Fibonacci chain
[17]. These predictions are directly accessible in experiments,
e.g., via an applied gate voltage. Each topological gap hosts
a topological subgap state that winds as a function of the
phason angle φ, both across the gap and in real space across
the Fibonacci chain, with winding number |q| given by a gap
labeling theorem [44–47]. We find that when the chemical
potential is tuned through the gaps, these topological subgap
states can fully carry the current and that their winding leads
to the critical current oscillating with the winding number,
while outside the gaps the critical current instead oscillates ac-
cording to the Fibonacci numbers. We therefore demonstrate
how the critical current can, in principle, measure the topo-
logical invariant in the Fibonacci chain. In summary, these
results show how Josephson junctions can be used to probe
the intricate physics of quasiperiodic systems, including their
interplay with ordered states such as superconductivity.

As an outlook, there are many open questions such as the
influence of quasiperiodicity on the AC Josephson effect, dif-
ferent heterostructures and sample realizations, the influence
of defects and disorder, finite temperature, self-consistent
phase gradients, as well as different strengths or symmetries
of the superconducting order parameter. It would also be in-
teresting to find a connection with the topological invariant
without relying on the phason angle [60]. Another interesting
topic is the connection, if any, between the quasiperiodic
critical localization with the current and its decay characteris-
tics. Furthermore, other theoretical models like the scattering
matrix approach, or analytic calculations using perturbation
theory and renormalization group theory [60], might shine
additional light on the rich physics of these systems. Beyond
quasicrystals, fractal lattices are another example of interest-
ing aperiodic structures to study the interplay of proximitized
phase-coherent phenomena [7–9]. We further note that the
supercurrent-magnetic field relation was recently studied in
the transverse direction through a single layer of such a fractal
[168], i.e., no current was transmitted along fractal degree
of freedom itself. Studying the Josephson effect and currents
propagating along a fractal would thus also be an interesting
outlook.
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APPENDIX A: MICROSCOPIC EVEN-ODD EFFECT

In this Appendix, we comment on the strong influence of
microscopic even-odd effects on the spectrum, specifically in
a junction with even or odd number of energy levels, sup-
plementing Secs. III–V in the main text. The scenario also
illustrates what happens in a system where there is already a
zero-energy state before the onset of superconductivity. De-
pending on the actual physical realization of the system, this
might either be an idealized or a crucial effect.

In Sec. III we showed how the ABS in the crystalline junc-
tion (ρ = 1) are degenerate at �θ = 0 and 2π , and how the
degeneracy is lifted for all ρ �= 1 when the quasiperiodic junc-
tion breaks the symmetry between the leads. The Fibonacci
approximant C9 studied in that case has an even number of
sites F9 + 1 = 56, while the number of sites instead becomes
odd when repeating the approximant an even number of times,
e.g., 2 × F9 + 1 = 111, or in every third approximant, e.g., C8

with F8 + 1 = 35 sites. At half-filling, nearest-neighbor hop-
ping endows the chain with chiral symmetry, which imposes
that for every state with positive energy, there exists another
state with equal but negative energy. Hence, the normal-state
spectrum with an odd number of sites (and thus energy levels)
must have an energy level at exactly zero energy because
of chiral symmetry, and the ABS spectrum becomes qual-
itatively modified with the ABS-degeneracy points shifting
to �θ = π instead [160]. We verify the modified degener-
acy in quasiperiodic junctions in Fig. 14, which shows the
energy-phase spectrum (a) and current-phase relation (b) for a
junction consisting of a repeated C9 approximant (i.e., oth-
erwise equivalent to Fig. 3). In Fig. 14(a) quasiperiodicity

FIG. 15. Same as Fig. 14 but for C8 without repetition, with F8 +
1 = 35 sites. The zero-energy state in (a) is not robust as it splits for
any ρ �= 1 as soon as tint �= 0.

breaks the degeneracy at �θ = π at all higher energies be-
cause of the broken symmetry between the leads, but the
degeneracy at zero energy is maintained leading to a fully
linear phase dispersion with only small variations in slope
with ρ at low energy. Consequently, since this zero-energy
state carries most of the current, ρ therefore has negligible
influence on the current, causing a similar sawtooth profile in
all cases shown in Fig. 14(b).

Next, we find that at the critical phase difference �θ =
�θc, the current is completely carried by the lowest-energy
state, with the current contribution from all other states being
either exactly zero or cancel pairwise. Away from this phase,
the reduction in current comes primarily from the variation
in the energy-phase dispersion from a linear slope at �θ = π

to zero slope at �θ = 0 or 2π , and secondarily from a de-
structive contribution of higher-energy states. This behavior is
qualitatively different from the junction with even number of
sites described in Sec. III, where the energy-phase dispersion
changes also its functional form away from �θc. Importantly,
the zero-energy state in Fig. 14(a) is robust against variations
in the hopping parameters. We find that this is related to a
preserved degeneracy where, e.g., the probability density of
the zero-energy state is exactly the same in both leads (not
shown), in contrast to the higher-energy states, which break
the degeneracy.

The situation changes qualitatively in a nonrepeated ap-
proximant with odd number of states, e.g., every third
approximant C5, C8, C11, and so on. Here, the zero-energy
degeneracy lifts for all ρ �= 1 as soon as tint �= 0 as illustrated
in Fig. 15 for the C8 approximant. The broken zero-energy
degeneracy in Fig. 15(a) leads to a smoother energy-phase
dispersion and thus a softening of the sawtooth profile in the
current in Fig. 15(b) for ρ �= 1. Thus, the broken degeneracy
for ρ �= 1 significantly reduces the current, such that the crys-
talline junction with ρ = 1 always has a larger current. We
find that the broken zero-energy degeneracy is caused by a
broken degeneracy between the leads, which we see in, e.g.,
the probability density of the zero-energy state (not shown),
which apart from the critical behavior shows an overall de-
crease from one lead to the other. Finally, we note that as
tint → 0 the zero-energy degeneracy is recovered for all ρ, but
the current vanishes accordingly because of the transparency
approaching zero.
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FIG. 16. (a) Heatmap showing the energy of the lowest-energy
ABS (Emin) as function of hopping ratio ρ and interface hopping tint ,
in the approximant C10 at fixed ρS = 1.3, superconducting phase dif-
ference �θ = π and μ = 0. Cyan-dashed line shows that the energy
is zero at tint = t∗

int (ρ, ρS) = √
ρ
√

ρS. (b),(c) Line cuts at fixed ρ and
tint as indicated by the vertical and horizontal lines in (a), respectively.
Gray dashed lines show the energy levels of the next-lowest ABS.

APPENDIX B: CONDITION FOR ZERO-ENERGY ABS

In this Appendix, we demonstrate how we obtain the
condition t∗

int (ρ, ρS) for the emergence of zero-energy ABS,
first in the Fibonacci approximants Cn with lengths L = a0Fn

presented in Table I, then for more general Fibonacci chains
of arbitrary discrete lengths L modeled by the characteristic
function Eq. (2), thus supplementing the discussion in
Sec. IV A and Sec. IV B. Specifically, we vary simultaneously
the hopping parameters tint, ρ ≡ tA/tB, and ρS ≡ tS/tB and
look for when the lowest-energy ABS reaches zero energy
nontrivially (i.e., ignoring trivial cases such as ρ → 0 or
tint → 0). We parametrize the phase space with zero-energy
ABS as tint = t∗

int (ρ, ρS), where we find a sawtooth current-
phase relation and the largest critical current. In a Fibonacci
chain with even number of sites, the zero-energy ABS at
t∗
int (ρ, ρS) occurs because of perfect Andreev reflection (zero

normal reflection) [147], also with a perfect wave function
matching at the interface as evidenced by the probability
density of the wave function. In a Fibonacci chain with odd
number of sites, there is already a zero-energy state in the
normal state [160] (see Appendix A), and t∗

int (ρ, ρS)
corresponds to the parameter space where this state remains
at zero energy.

We start by demonstrating the emergence of zero-energy
ABS and the procedure for obtaining t∗

int (ρ, ρS) in a Joseph-
son junction where the nonsuperconducting region consists
of the C10 approximant, followed by the other approximants.
Figure 16(a) shows a heatmap of the energy for the lowest-
energy ABS (Emin) as a function of tint and ρ in the C10

approximant (without repetitions), at fixed ρS = 1.3 and
phase difference �θ = π . The ABS energy is zero along
tint = t∗

int (ρ, ρS) = √
ρ
√

ρS (cyan-dashed lines), as a result of
perfect Andreev reflection [147], also associated with the ap-
pearance of a Jackiw-Rebbi zero mode [161]. In contrast, the

FIG. 17. Same as Fig. 16(a) but showing Emin as function of
hopping ratio ρS and interface hopping tint at fixed ρ = 1.6.

zero-energy state occurring for all tint at ρ → 0 corresponds to
the trivial scenario where the entire spectrum reduces to three
energy levels (see Sec. II A), and is thus of no interest here.
Figures 16(b) and 16(c) are obtained from line cuts at fixed
ρ and tint along the vertical and horizontal lines in (a), re-
spectively. These plots illustrate more clearly the shape of the
spectrum around zero energy, also showing the energy level of
the next-lowest ABS (gray-dashed lines). We obtain the full
functional form t∗

int (ρ, ρS) by varying also ρS, which produces
an equally good overlap as in Fig. 16(a) for each ρS, which
is further illustrated in Fig. 17 showing Emin as a function of
tint and ρS at fixed ρ = 1.6 (which we verify also for other
values of ρ). In other words, all plots here are projections of
our higher-dimensional spectra E (tint, ρ, ρS).

Next, we study different Fibonacci approximants using the
same methodology as above, and find that all approximants
with even number of sites follow the same scaling

√
ρS

in t∗
int (ρ, ρS), while the scaling in ρ varies between three

different functional forms. Beyond the one shown for the
C10 approximant, we find t∗

int (ρ, ρS) = ρ
√

ρS for, e.g., C9 in
Fig. 18(a), and t∗

int (ρ, ρS) = √
ρS for, e.g., C12 in Fig. 18(b).

The situation changes qualitatively in the approximants
with odd number of sites, (i.e., every third approximant
C2,C5,C8, . . .), as shown for C11 in Fig. 18(c). Here, there
is already a zero-energy state in the normal state, related to
the microscopic even-odd effect discussed in Appendix A,
which changes the degeneracy points in the ABS spectrum
[160]. As a result, the phase-space of zero-energy ABS
t∗
int (ρ, ρS) technically becomes a manifold instead of an

analytic function, where we find zero-energy ABS ∀tint, ρS

at ρ = 1, or alternatively for ∀ρ, ρS at tint → 0. However,
we are not interested in the latter scenario since it describes
an uncoupled system. We find that the underlying reason
for the broken zero-energy degeneracy, and thus the shift to
finite energy, is related to the Fibonacci chain breaking the
symmetry between the leads, together with the coupling to
the superconducting leads (tint �= 0). By repeating the above
procedure for every approximant from C0 to C17, we obtain
the results presented in Table I in Sec. IV A.

Next, we comment on the small numeric deviations be-
tween Emin = 0 and the t∗

int (ρ, ρS) seen in the above figures.
Specifically, we attribute these deviations to small corrections
in powers of �0/tB similar to in the crystalline case [147], i.e.,
disappearing in the limit �0 � tA, tS, tB.
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TABLE II. Condition t∗
int (ρ, ρS) for zero-energy ABS, in a Fibonacci chain with physical length L (i.e., L/a0 + 1 number of sites) as

modeled by the characteristic function in Eq. (2). Here, junctions with odd number of sites already host a zero-energy state in the normal state
(see Appendix A), and the notation of style ∀ρS and ρ = 1 denotes for which values the ABS remains at zero energy ∀tint . We note that when
the length is L = a0Fn, we obtain the Fibonacci approximants Cn consistent with Table I.

#sites t∗
int (ρ, ρS)/tB #sites t∗

int (ρ, ρS)/tB #sites t∗
int (ρ, ρS)/tB #sites t∗

int (ρ, ρS)/tB #sites t∗
int (ρ, ρS)/tB

41 ρ = 1, ∀ρS 81 ρ = 1, ∀ρS 121 ∀ρS, ∀ρ 161 ρ = 1, ∀ρS

2
√

ρ
√

ρS 42
√

ρ
√

ρS 82 ρ
√

ρS 122
√

ρ
√

ρS 162
√

ρS/ρ

3 ρ = 1, ∀ρS 43 ∀ρS, ∀ρ 83 ρ = 1, ∀ρS 123 ∀ρS, ∀ρ 163 ρ = 1, ∀ρS

4 ρ
√

ρS 44
√

ρ
√

ρS 84
√

ρ
√

ρS 124
√

ρS 164
√

ρS/
√

ρ

5 ρ = 1, ∀ρS 45 ρ = 1, ∀ρS 85 ∀ρS, ∀ρ 125 ρ = 1, ∀ρS 165 ρ = 1, ∀ρS

6
√

ρ
√

ρS 46 ρ
√

ρS 86
√

ρ
√

ρS 126
√

ρS/
√

ρ 166
√

ρS

7 ∀ρS, ∀ρ 47 ρ = 1, ∀ρS 87 ρ = 1, ∀ρS 127 ρ = 1, ∀ρS 167 ρ = 1, ∀ρS

8
√

ρS 48
√

ρ
√

ρS 88 ρ
√

ρS 128
√

ρS/
√

ρ 168
√

ρS/
√

ρ

9 ρ = 1, ∀ρS 49 ∀ρS, ∀ρ 89 ρ = 1, ∀ρS 129 ρ = 1, ∀ρS 169 ρ = 1, ∀ρS

10
√

ρS 50
√

ρS 90
√

ρ
√

ρS 130
√

ρS 170
√

ρS/
√

ρ

11 ∀ρS, ∀ρ 51 ρ = 1, ∀ρS 91 ∀ρS, ∀ρ 131 ∀ρS, ∀ρ 171 ρ = 1, ∀ρS

12
√

ρ
√

ρS 52
√

ρS 92
√

ρS 132
√

ρ
√

ρS 172
√

ρS

13 ∀ρS, ∀ρ 53 ∀ρS, ∀ρ 93 ρ = 1, ∀ρS 133 ∀ρS, ∀ρ 173 ∀ρS,∀ρ

14
√

ρS 54
√

ρ
√

ρS 94
√

ρS 134
√

ρS 174
√

ρ
√

ρS

15 ρ = 1, ∀ρS 55 ρ = 1, ∀ρS 95 ∀ρS, ∀ρ 135 ρ = 1, ∀ρS 175 ∀ρS,∀ρ

16
√

ρS/
√

ρ 56 ρ
√

ρS 96
√

ρ
√

ρS 136
√

ρS 176
√

ρS

17 ρ = 1, ∀ρS 57 ρ = 1, ∀ρS 97 ρ = 1, ∀ρS 137 ∀ρS, ∀ρ 177 ρ = 1, ∀ρS

18
√

ρS/
√

ρ 58
√

ρ
√

ρS 98 ρ
√

ρS 138
√

ρ
√

ρS 178
√

ρS

19 ρ = 1, ∀ρS 59 ∀ρS, ∀ρ 99 ρ = 1, ∀ρS 139 ρ = 1, ∀ρS 179 ∀ρS,∀ρ

20
√

ρS 60
√

ρ
√

ρS 100
√

ρ
√

ρS 140 ρ
√

ρS 180
√

ρ
√

ρS

21 ∀ρS, ∀ρ 61 ρ = 1, ∀ρS 101 ∀ρS, ∀ρ 141 ρ = 1, ∀ρS 181 ρ = 1, ∀ρS

22
√

ρ
√

ρS 62 ρ
√

ρS 102
√

ρ
√

ρS 142
√

ρ
√

ρS 182 ρ
√

ρS

23 ∀ρS, ∀ρ 63 ρ = 1, ∀ρS 103 ρ = 1, ∀ρS 143 ∀ρS, ∀ρ 183 ρ = 1, ∀ρS

24
√

ρS 64 ρ3/2√ρS 104 ρ
√

ρS 144
√

ρS 184
√

ρ
√

ρS

25 ρ = 1, ∀ρS 65 ρ = 1, ∀ρS 105 ρ = 1, ∀ρS 145 ρ = 1, ∀ρS 185 ∀ρS,∀ρ

26
√

ρS 66 ρ
√

ρS 106 ρ3/2√ρS 146
√

ρS 186
√

ρS

27 ∀ρS, ∀ρ 67 ρ = 1, ∀ρS 107 ρ = 1, ∀ρS 147 ∀ρS, ∀ρ 187 ρ = 1, ∀ρS

28
√

ρ
√

ρS 68 ρ
√

ρS 108 ρ
√

ρS 148
√

ρ
√

ρS 188
√

ρS

29 ρ = 1, ∀ρS 69 ρ = 1, ∀ρS 109 ρ = 1, ∀ρS 149 ∀ρS, ∀ρ 189 ∀ρS,∀ρ

30 ρ
√

ρS 70 ρ3/2√ρS 110
√

ρ
√

ρS 150
√

ρS 190
√

ρ
√

ρS

31 ρ = 1, ∀ρS 71 ρ = 1, ∀ρS 111 ∀ρS, ∀ρ 151 ρ = 1, ∀ρS 191 ∀ρS,∀ρ

32
√

ρ
√

ρS 72 ρ3/2√ρS 112
√

ρ
√

ρS 152
√

ρS/
√

ρ 192
√

ρS

33 ∀ρS, ∀ρ 73 ρ = 1, ∀ρS 113 ρ = 1, ∀ρS 153 ρ = 1, ∀ρS 193 ρ = 1, ∀ρS

34
√

ρ
√

ρS 74 ρ3/2√ρS 114 ρ
√

ρS 154
√

ρS/
√

ρ 194
√

ρS/
√

ρ

35 ρ = 1, ∀ρS 75 ρ = 1, ∀ρS 115 ρ = 1, ∀ρS 155 ρ = 1, ∀ρS 195 ρ = 1, ∀ρS

36 ρ
√

ρS 76 ρ
√

ρS 116
√

ρ
√

ρS 156
√

ρS 196
√

ρS/
√

ρ

37 ρ = 1, ∀ρS 77 ρ = 1, ∀ρS 117 ∀ρS, ∀ρ 157 ρ = 1, ∀ρS 197 ρ = 1, ∀ρS

38 ρ3/2√ρS 78 ρ
√

ρS 118
√

ρS 158
√

ρS/
√

ρ 198
√

ρS

39 ρ = 1, ∀ρS 79 ρ = 1, ∀ρS 119 ρ = 1, ∀ρS 159 ρ = 1, ∀ρS 199 ∀ρS,∀ρ

40 ρ
√

ρS 80 ρ3/2√ρS 120
√

ρS 160
√

ρS/ρ 200
√

ρ
√

ρS

Next, we follow the same methodology to obtain t∗
int (ρ, ρS)

for Fibonacci chains of arbitrary discrete length L as modeled
by the characteristic function (2). We find that these Fibonacci
chains alternate between the same functional forms as the
Fibonacci approximants Cn (we verify that when L = a0Fn

we obtain the same results as in Table I), but also a few
additional ones as shown in Table II for all lengths between
L ∈ [2, 200]a0. Specifically, we find that junctions with an
even number of sites can also have t∗

int (ρ, ρS) = ρ3/2√ρS,
t∗
int (ρ, ρS) = √

ρS/
√

ρ, and t∗
int (ρ, ρS) = √

ρS/ρ, as shown in
Fig. 19. Thus, for such junctions with even number of sites
the scaling in ρS thus always goes as

√
ρS, and the scaling

exponent in ρ is always a rational number. We do not rule
out that there might be additional scalings for other lengths

L > 200a0, but note that the new scalings occur for very few
L in comparison with the ones found for the approximants
Cn. We find that the junctions with odd number of sites either
show a zero-energy state for the same parameter space as
the approximants (∀tint, ρS at ρ = 1), or host a zero-energy
state that is also degenerate regardless of quasiperiodicity (i.e.,
∀tint, ρS, ρ).

Finally, we comment on the variations in t∗
int (ρ, ρS) and

Ic with junction length L. In particular, we find symmetric
variations in both of these quantities repeating across multi-
ple length scales, from a few sites to hundreds of sites. For
instance, t∗

int (ρ, ρS) varies symmetrically for increasing and
decreasing length around 72 ± 70 #sites and around 161 ± 40
#sites (see Table II), but also with similar local symmetry
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FIG. 18. Same as Fig. 16(a) but for C9 (a), C12 (b), and C11 (c).

around other points within these intervals, e.g., = 38 ± 16
#sites. The symmetry can also be seen by, e.g., selecting any
two closest lengths with condition ∀ρS,∀ρ (such as 91 and

FIG. 19. Same as Fig. 16(a) but for a Fibonacci chain following
the characteristic function Eq. (2) with ρS = 1.6 and lengths L =
106a0 (a), L = 158a0 (b), and L = 160a0 (c).

95 #sites), where the symmetry can extend further beyond
the points depending on which two points are chosen. We
note that the microscopic oscillations in Ic(L) show a simi-
lar symmetry, e.g., across L = (681 ± 303)a0 in Fig. 10(c),
and also at multiple shorter length scales within this span.
These variations thus imply self-similarity and scale invari-
ance. This is further supported by noting that t∗

int (ρ, ρS)
alternates cyclically with n in the Fibonacci approximants
Cn, and thus quasiperiodically in L = a0Fn according to the
Fibonacci number, i.e., quasiperiodic and self-similar varia-
tion in t∗

int (ρ, ρS) with L. Thus, based on our data for L ∈
[1, 2584]a0 in the approximants C0 to C17 and L ∈ [2, 1000]a0

for Fibonacci chains modeled by the characteristic function,
we find scale-invariant and quasiperiodic variations in both
t∗
int (ρ, ρS) and Ic(L).

APPENDIX C: TOPOLOGICAL INVARIANT
FROM CRITICAL CURRENT: ADDITIONAL RESULTS

Section V B in the main text demonstrated the proof-of-
principle that the critical current can be related to the topo-
logical invariant of the Fibonacci chain via the winding of the
subgap states. Specifically, Fig. 13 illustrated how the winding
states cause distinct p = |q| number of periodic oscillations
in the critical current. In this Appendix, we discuss and show
how this holds for other parameter values and approximants.

In Fig. 20(a) we plot the corresponding full power spec-
trum between half-filling and the band edge of Figs. 13(c) and
13(d), illustrating the same three kinds of peaks found in the
latter figures, namely the main peaks from winding numbers
|q| when μ is inside the gaps (cyan lines), the Fibonacci peaks
outside the gaps, and additional spurious peaks caused by
the discrete Fourier transform. This is more clearly illustrated
in Fig. 20(b) where we plot max{P, p}, i.e., only the largest
peak at each μ. All gaps with winding numbers |q| < 20
are clearly distinguishable. Furthermore, the signature of the
largest gaps extends slightly beyond the gap itself. This is
one reason why the |q| = 20 gap is not visible in Fig. 20(b)
since it lies too close to the largest gap |q| = 1, although it
is clearly visible in Fig. 20(a) as the largest peak for p = 20.
Apart from the Fibonacci peaks appearing outside the gaps,
the only additional peaks found are those correspond to the
frequency doubling, e.g., when the Fermi level lies inside
the gaps with |q| � 4. We expect that a significantly better
result can be obtained by applying refined signal processing
operations, and that peak fitting can yield a better quantifica-
tion of the uncertainty and spurious peaks. Still, our results
show that even our simple approach can be used to infer the
topological invariant and winding number from the critical
current.

Finally, for the sake of completeness, we comment on the
above procedure for other parameter values and Fibonacci
chains. We generally find that close to tint = t∗

int (ρ, ρS), the
spurious peaks caused by the discrete Fourier transform (e.g.,
frequency doubling) become smaller, while the Fibonacci
peaks are quite pronounced. Farther from tint = t∗

int (ρ, ρS), the
situation is reversed, i.e., with larger influence of the spurious
peaks, and smaller influence of the Fibonacci peaks. Impor-
tantly, the peaks because of the winding numbers p = |q|
of the topological gaps are clearly distinguishable in both
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FIG. 20. (a) Power spectrum P of the critical current Ic as a function of chemical potential μ and number of periodic cycles p in the C9

junction (no repetition) at ρ = 0.8, ρS = 1, tint = 0.5tB, with normalization N . (b) Maximum of the power spectrum at each μ. Cyan lines are
winding numbers |q| = p, with length corresponding to each gap width.

cases, where in addition these peaks stretch further outside
the gaps further from tint = t∗

int (ρ, ρS). Additionally, we find
that by comparing the results for different parameter values,
we can more reliably capture the winding numbers in the
smallest gaps. We find a similar conclusion also for ρ = 0.5,
ρ = 1.2, and ρ = 1.5. We also find that the procedure works
with and without repetition of the Fibonacci approximant, as
well as in longer Fibonacci approximants since these show

the same major gap structure and winding numbers. The
instances when the procedure works less well include, e.g.,
very short approximants with less clear winding with φ, or
when the hopping ratio becomes either very small or very
large, or deviates significantly from tint = t∗

int (ρ, ρS), e.g., as
when tint → 0. In these cases, the spurious peaks become so
large that it can be difficult to reliably identify the winding
numbers.
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