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Abstract 

 
Every so often, in science, new empirical results compel us to reconsider exactly what we really do 
know and do not know with mathematical certainty about fundamental principles. Startling but 
highly credible results from Greffet et al [1,2] and from Popovic’s group [3] raise serious questions 
about the conventional understanding of the Second Law of thermodynamics. Prigogine, in his last 
years, argued that the patterns of order and life we see in the universe would have been possible, in 
equilibrium, in a universe of infinite lifetime, even without a Big Bang, because of field effects [4]. 
Huw Price [5,6] has provided compelling arguments to prefer the initial formulation of Hawkings’ 
theory of the Big Bang—the version in which the arrow of time sometimes flows backwards in time, 
with profound implications for the foundations of quantum measurement. This paper will offer one 
possible unified view of these issues, and suggest that new technologies may in fact be possible in 
principle. 
 
1. Introduction 
 
The purpose of this paper is to suggest a possible resolution to certain contradictions which have emerged 
in recent research across a wide variety of fields. The mathematical details of this picture certainly need to 
be filled in, but it is hoped that this paper will be a useful starting point for future research. 

The immediate starting point for this work was a set of three independent pieces of work: (1) 
highly credible theoretical and empirical papers by Greffet et al [1,2], suggesting that about 10 percent of 
the infrared heat energy radiated by certain nanopatterned materials comes out as infrared radiation 
coherent to a few wavelengths and focused in its direction of propagation; (2) highly credible theoretical 
and empirical work by Popovic’s group, showing how "totally incoherent ambient" microwave radiation in 
the 3-18 GHz band can be converted to useful electricity with 20 percent efficiency, using spiral rectennas 
[3]; (3) a proposal by Martin Margala of Rochester to adapt a new type of rectifier [7] to allow 
rectification of (heat) radiation in the 3-18 THz band, even without exploiting any temperature difference 
in the ambient environment. 

These pieces of work seem to suggest that it should be possible to convert heat to electricity (free 
energy) on earth. But that suggestion constitutes gross heresy, in light of the conventional understanding of 
the Second Law of thermodynamics. 

In actuality, the literature on the Second Law is very fragmented, and far less conclusive than is 
commonly believed. This paper will argue that it probably is possible, in principle, to convert ambient heat 
on earth to electricity after all. Furthermore, it will discuss some connections to the issues of quantum 
foundations and of the physical basis for life. 

The next section will summarize the picture which appears to emerge when I try to reconcile a 
wide variety of contradictory sources. Section 3 will include some additional details for each of the points 
in section 2, in order. 

 
2. Summary of a Proposed Reconciliation 

 
2a. Entropy: the entropy of a state of the universe is essentially just the logarithm of the probability of that 
state, according to some equilibrium probability density of the physical state in question. For some 
dynamical systems and equilibrium probability densities, there is no statistical correlation at all between the 
state at point x and the state at point y, for x≠y; in such cases, the global entropy function is a "local 
function" (sum of a function of local quantities only), and entropy corresponds to perfect disorder. But 
many dynamical systems -- including our universe -- are not in that class.  
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2b. Device Types: Most conventional discussions of the Second Law prove that energy cannot be extracted 
from heat in equilibrium, by a certain class of devices. Many such discussions assume or "prove" that it is 
impossible to violate Carnot's Laws, which are actually more restrictive than the Second Law as normally 
interpreted; yet it is certainly well established that many devices, like fuel cells, are not "heat engines," and 
can in fact violate the limits set out by Carnot. Much of the literature on the Second Law focuses on limited 
classes of devices like gas dynamic systems, physical barriers to molecules, or cyclic disturbances to fields 
-- broader classes than heat engines, but narrower than what is possible in principle with fields. 
 
2c. General Results: A more general or rigorous treatment of equilibrium statistics, based on classical 
Hamiltonian field theory or on quantum statistical thermodynamics, ends up with exactly the same operator 
expression for possible equilibria pdf (expressed as density matrices). This exact classical-quantum 
equivalence is itself of some interest. The allowable equilibria are a "local" invariant measure (which would 
indeed represent "disorder"!), multiplied by a canonical grand ensemble operator, which is essentially just a 
Boltzmann distribution in operator form, with other terms in the exponent to represent conserved quantities 
other than energy.  
  
2d. Greffet(1): The possibility of nonlocality in this pdf depends on the Boltzmann term. For practical 
purposes, solid state devices may be viewed as a collection of ions in rigid locations, providing a kind of 
"designer" potential field V(x), influencing electrons and photons. Greffet's work is a very straightforward 
illustration of how it is possible to craft a potential field which yields "nonlocal correlations" in the 
movement of electrons and photons. The theoretical analysis used by Greffet et al [2] in designing their 
nanopatterned SiC material is essentially the same mathematics one would use in analyzing the Boltzmann 
dynamics -- and is a solid theoretical basis for believing that  systems in this class are not subject to the 
same locality limitations as we see in gaseous systems. 
 
2e. Greffet(2): The violation of the "Second Law" conventional wisdom all takes place in the Greffet 
experiments and theory, the most thoroughly validated starting point for this paper. Once it is agreed that 
ambient heat can be turned (at 10 percent efficiency) into well-ordered, nonrandom focused radiation, the 
further details are essentially mechanical. In principle, for example, Greffet's materials actually cause 
temperature gradients which could be exploited to yield free energy; however, in practical terms it would 
make more sense to convert the radiation itself into electricity directly, using known technological 
principles which are most efficient for that kind of application. For specialists in Greffet’s area, there is 
nothing surprising or shocking about how he does what he does. He uses well-established filtering 
principles; however, the larger implications of what he has done are still very important.  
 
2f. Popovic: Popovic's claims are highly credible and well demonstrated for ambient microwave radiation; 
however, they need to be understood in the microwave context. In that context, it is routine to have 
antennas at room temperature which are able to receive radiation at frequencies much lower than room 
temperature (compared using the kT=hν relation), because of the usual degree of coherence, which allows 
one to neglect quantum effects. Large scale rectennas, developed for purposes of power beaming, have 
achieved efficiencies on the order of 60 percent or more. For the relatively coherent IR coming out of 
Greffet's materials, it would be reasonable to expect that a spiral rectenna scaled to THz frequencies should 
be able to achieve 20 to 60 percent efficiency, if rectifiers could be found to enable a spiral rectenna scaled 
down by a factor of 1,000 from Popovic's in all spatial dimensions. In theory, if heat flux were on the order 
of 100 watts per square centimeter, this would imply that a 10cm-by-10cm slab of SiC, with a lower 
"Greffet" layer and an upper spiral nanorectenna layer, should be able to achieve 200-600 watts of cooling 
and power extraction, if properly mounted; however, the nanotechnology to demonstrate/test such a spiral 
nanorectenna is only now coming into reach, and has yet to demonstrate anything like the efficiencies 
achieved at lower frequencies. 
 
2g. Backwards Time: If all of this actually should work, it is not inconceivable that a time-reversed 
version could also be developed -- but the theory behind such hopes is far less clear at this time. 
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3. More Detailed Discussion of Points 2a-2g. 

 
One could easily write an entire book on any one of the points 2a through 2g. But that would defeat the 
goal here of trying to develop a more integrated picture. This paper will only provide a few highlights of 
what underlies these points. 
 
3a. Entropy (2a): Basic Principles and Common Misconceptions 
 
The topics of entropy, disorder and heat death have attracted great public interest – and, for that reason, 
have spawned large misunderstandings in the general public and in other areas of science. This section will 
review a few of the most basic general properties of entropy – and contrast them with common 
misconceptions about the subject. 
 Many people have been taught to believe the following: “Entropy is a measure of disorder. 
Mathematicians have proven that all possible dynamical systems follow the laws of entropy. These laws 
state that entropy must always increase until it reaches its maximum... whereupon the system is in a state of 
total disorder or ‘heat death,’ and entropy fluctuates about the maximum.” 
 Years ago, I attended a plenary talk by Melanie Mitchell of the Santa Fe Institute, where she 
described a wide number of simulations of interesting complex dynamical systems, similar to what she 
discusses in [8]. One of the audience got up and said that what she described was inherently impossible. 
The systems she described were totally “closed” in a mathematical sense; the state at time t+1 was always a 
function of the state at time t, without any external variables coming into it. Yet as (simulated) time went 
by, the simulations displayed all kinds of interesting patterns of emergent order, without ever settling down 
to anything even remotely like a heat death. Of course, her simulations were completely valid; the problem 
was with the questioner’s understanding of what entropy is about. 

Even within the field of chemical thermodynamics, it was once believed [9] that open systems 
would be governed by a local “entropy production” quantity which would play the same role as local 
entropy in closed systems. Perhaps for that reason, many leading scientists were violently skeptical about 
the possibility of stable chemical oscillations a few decades ago – until, after many years of struggle, it was 
finally accepted that interesting patterns of oscillation really could persist, at least if there were an influx of 
energy. 

In a similar way, in the field of nonlinear dynamical systems, it was once believed that emergent 
phenomena could only take on a few simple possibilities – like stable point attractors or diffuse “heat 
death” kinds of equilibria, like the extremes of fire and ice. Gleick has documented well the struggle [10] to 
have accepted the full range of possible equilibrium probability distributions, in effect. There is a great 
diversity of possible patterns of equilibrium statistics, depending on characteristics of specific dynamical 
systems. 

Many would assume that complex behavior of this sort can only emerge in a certain kind of open 
systems, systems where energy can be exchanged with the environment. This would include systems which 
are mathematically closed, but which include mechanisms like forcing functions or dissipation terms which 
can change the energy level of the system. But it has been firmly established [11] that phenomena exactly 
like chaos can occur within “energy surfaces,” even in systems which conserve energy in an absolute way. 
Classical or Poincare-style chaos is an important area for research. Back in 1994, I even found and 
simulated a simple set of stoichiometric equations which could conserve energy – and still yield oscillations 
in equilibrium, indefinitely [12] – in the case where one of the reactions is allowed to go “left to right” but 
not “right to left.” (Of course, this was not a case of realistic chemistry, but a demonstration of a 
mathematical point.) 

Despite these examples, there still do exist concepts of entropy which apply to very general classes 
of dynamical system. These generally come from the general formal theory of ergodic processes and 
related processes, developed initially by mathematicians like Von Neumann. 

Many dynamical systems do possess one and only one possible equilibrium probability 
distribution function (pdf) for possible states. Crudely, if there are N possible states in a system, then the 
“entropy” of any state i is simply log pi, where pi is the equilibrium probability of that state. More 
generally, the statement that “the actual probability distribution of the system converges to a maximum of 
entropy” is essentially the same as saying “the actual probability distribution converges to the equilibrium 
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distribution,” which is not all that surprising if there is only one possible equilibrium state (and we do time-
averaging as we compute what we are converging to). This statement certainly does not say that we 
converge to a state of “heat death,” As in Mitchell’s simulations, it could simply mean that we converge to 
a set of interesting states. One may joke that “Washington D.C. has already reached a state of maximum 
entropy” – but this is not quite so much of a joke as it appears. The questions of order, life and “free 
energy” revolve about the specific character of the specific entropy function of the specific dynamical 
system under consideration, even for the case of closed systems.  

Many of the strongest results about entropy were derived for a very specific class of dynamical 
systems – “stoichiometric” systems, systems of classical chemical reaction equations in which it is assumed 
that molecules move freely (with infinite mean free path) throughout infinite space, as in an ideal gas [9]. 
But this does not apply directly to systems like electromagnetic fields. Still, even in the stoichiometric case, 
it is well-known that we must complicate the analysis in a very important way: we must account for the fact 
that there exist conserved quantities like energy. Instead of having a unique equilibrium pdf, we have a set 
of possible equilibrium pdf, corresponding to different values of these conserved quantities. If we have n 
conserved quantities, q1 .. qn, the possible equilibrium pdf pi* essentially take a generalized Boltzmann 
form: 
      (1) Zqcqcpp nnii /)...exp( 11 −−−=∗

where the constants ci are parameters of the distribution, where pi is a kind of default invariant probability 
measure (just a constant in the case of chemical systems), and where Z is a scalar inserted to make sure that 
probabilities add up to one across all states i. Z is called the “partition function” of the system. The concept 
of “temperature” becomes well-defined after we have such a distribution; if q1 is chosen to be the energy 
of the system, then temperature can be defined as a/c1, where “a” is a constant reflecting the arbitrary nature 
of the units in which we measure temperature.  
 Likewise, some dynamical systems can be described as systems made up of a finite or countably 
infinite number of independent objects i. If the states of these objects happens to be independent of the 
states of the other objects, then the global pdf takes on the form: 
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where n is the number of objects (possibly infinity), where s[i] is the state of object i, and pi is the 
equilibrium probability of object i being in that state. Taking logarithms, we may easily deduce that the 
global entropy function would be a “local” function (more precisely, a sum of local entropy functions): 
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It is a simple tautology to say that systems with equilibrium pdf like (2) would converge to a state of 
“disorder” (zero correlation between objects). Deducing (3) from (2) is not such a powerful result. The 
challenge is how to decide which systems would obey (2) in the first place. 
 The obvious next question is: how do we get closer to the actual universe we live in? Can we 
derive results which apply to our universe, which is certainly more complicated than these simple idealized 
approximations? 
 Section 3b will say more about that. But for now, let us discuss a class of dynamical systems 
which is much closer to our actual universe, permeated as it is by continuous fields. Let us consider 
systems whose state at time t is defined by a vector-valued field ϕ(x), for x∈R3. (I am not assuming a 
“vector” in the sense of relativity theory, but rather, any old mathematical vector, which could actually be 
some kind of amalgam of relativistic scalars, vectors, tensors, spinors, etc.). In this case, we can imagine 
three main possibilities for what the entropy function might look like: 
 
 (case 1):  ∫= xdxSS s

3))((ϕ       (4) 

 (case 2):  ∫ ∇∇= xdxxxSS xxs
32 ))(),(),(( ϕϕϕ     (5) 

 (case 3):  effectively nonlocal, not reducible to 5. 
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The key point is that case 1 implies a system which converges to total “disorder,” just like equation 3. But 
case 2 does not. Even though case 2 involves a kind of local entropy function, it involves an entropy 
function whose minimum value need not be a kind of uniform “grey” field like a heat death! In summary, 
case 3 certainly would be exempt from the “disorder” results for simpler systems – but even case 2 can 
sometimes be exempt, depending on specific characteristics of the local entropy functions. 
 We can find a simple example of case 2 under our nose, so to speak. In cosmology, it is perfectly 
obvious that our universe cannot possibly be converging to the heat death of the ideal gas, as one might 
imagine from the stoichiometric model. We are not converging to a situation where field states at nearby 
points are totally uncorrelated. John Wheeler [13] has developed a modified picture of the entropy death of 
the universe, as close as possible to the spirit of classical thermodynamics, but modified to account for the 
most obvious facts of life. In this picture, all life does die in the end... but the universe condenses out into 
objects like white dwarf stars, dead planets and black holes. These objects are not the kind of lively patterns 
we might wish for ... but they definitely do represent a kind of order, a kind of correlation across space in 
equilibrium for the proposed model of the universe. In my view, this order results from the energy term in 
the generalized Boltzmann distribution, a term which depends on field fluxes (as in equation 5), and which 
favors lower-energy states like states of gravitational condensation. In my view, the larger implications of 
the work of Greffet are probably based on the same kind of effect. 
 Seth Lloyd, a leader in the field of quantum computing,  wrote a paper in 1997 [14] arguing that 
field effects can allow a kind of “Maxwell’s demon” in the quantum domain, in a way that may not depend 
so heavily on quantum effects as such. This has spawned a large literature, mainly focusing on quantum 
effects, which I have not yet had a chance to map out. 

By far the most rigorous general version of the Second Law in the current literature comes from 
the work of Allahverdyan. and Nieuwenhuizen [15]. Early versions of their work seemed to show promise 
in proving the general impossibility of extracting energy from heat, but the most recent work has 
demonstrated that counterexamples to the principles which lead to this can in fact be constructed. I have not 
yet assimilated the ideas of section 2 into their framework, but it would appear that the solid state field 
Hamiltonians and wave functions underlying Greffet’s work do tie in with the kinds of theoretical 
loopholes they have described.  
 
3b. Specific classes of “device” (2b): heat engines, fuel cells, organisms, etc. 
 
It is extremely difficult to prove truly useful results for all possible universes, or even for all possible 
devices in our own universe. Thermodynamics has been forced to make severe simplifying assumptions or 
approximations, or to focus on limited classes of devices, in order to get practical results. The challenge 
before us is to improve the approximations, and increase the set of devices under analysis, without 
becoming mathematically intractable. 
 Carnot’s Laws are among the most useful results in thermodynamics. Decades ago, industry 
lobbyists in Washington routinely ridiculed conservationists who “do not understand how Carnot’s Laws 
simply cannot be broken.” Yet gradually the technical reality broke through these cultural barriers. 
Numerous authors explained how Carnot’s Laws apply only to heat engines, and that fuel cells, not being 
heat engines, are exempt from Carnot’s Laws (but not from the usual Second Law limitations). Of the 
hundreds of papers on this topic, I would prefer to cite Kordesch [16], because he – like Pat Grimes of 
Allis-Chalmers and Exxon, and John Appleby of Texas A&M – actually built alkaline fuel cell systems of 
great practical interest, showing efficiencies of about 60 percent without anything like the high temperature 
differences used in everyday car engines. Appleby and Kordesch both cite many more rigorous sources on 
the underlying thermodynamics of fuel cells. Papers on the “Second Law” which assert that all possible 
devices are bounded by Carnot’s Laws are clearly relying on conventional wisdoms rather than general 
mathematics. (There is nothing wrong, of course, with papers which apply Carnot’s Laws to those 
particular classes of device which are bound by them.) It is my view than carbon-tolerant alkaline fuel cells, 
along with “plug-in hybrids”, are the two most promising technologies to permit drastic reduction in 
worldwide CO2 emissions from cars soon enough to avert the total melting of the Arctic Ice Cap, if other 
measures are also taken [17]. 
 In chemical engineering, people have known for many decades how to decompose the total energy 
∆H of a fuel into the free, extractable part ∆F versus the part T∆S which only provides heat. But I have 
located no such generalized decomposition rule yet for the energy of ambient (unpolarized) electromagnetic 
fields, as a function of coherence length, frequency ν, degree of uniformity in direction of motion, 
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intensity, and temperature T of the receiver. (Formulas for signal detection do not apply directly, since 
energy extraction is a different issue.) Richard Fork [18] has reported an efficiency limit of 1-(kT/hν) for a 
specific class of optical switching systems; however, conventional rectennas clearly work with efficiency 
>0 for cases where hν<<kT!! Still, even Fork’s formula, taken at face value, appears to suggest some 
possibility of extracting energy from those portions of the blackbody spectrum which exceed the average 
frequency. 
 If points 2e and 2f hold up under proper scrutiny, this would imply that we really cannot 
decompose ambient radiation into exploitable and nonexploitable parts, for all possible field devices. If 
people find it difficult to derive such a universal decomposition, this might explain why.  (Even if we can 
only achieve a 1% extraction rate “per iteration,” the other 99% of the heat energy remains available to 
exploit in a later iteration!) If so – instead of trying to decompose radiation into exploitable versus 
nonexploitable portions, we may have to limit ourselves to analyzing specific classes of field effect 
devices. In the worst case, theoretical limits could be developed separately for rectenna designs, and for 
light-modifying devices like Greffet’s. This would provide more direct guidance as to what is possible 
along the lines of 2e and 2f. Of course, it would be desirable to make these classes as general as possible. 
These intellectual challenges will be important, one way or another, regardless of whether 2e and 2f hold 
up exactly as stated. 
 Some colleagues have suggested that the Greffet/nanorectenna combination could yield net 
energy, without violating today’s understanding of the Second Law. After all, we would use this 
combination here on earth, which is an open system, receiving its heat directly or indirectly from the sun. 
But the concepts here really do not seem to involve the sun, so far as I can tell. As a thought experiment, 
they should work on an “infinite earth” if they work at all. 
 Finally, it is interesting to return to the age-old question of how we could better understand the 
phenomenon of life in terms of thermodynamics and nonlinear system dynamics. Life on earth certainly 
seems to obey the usual understanding of the Second Law, drawing its energy from the sun or from 
temperature differences at great depths; yet it should not surprise us too much that gelatinous cells based on 
DNA have not yet stumbled across strict nanopatterned SiC arrays!  
 The growing literature on (physics type) solitons in 3+1 dimensions [19-22] has some relevance 
both to thermodynamics and to the understanding of life. Black holes ala Wheeler are only one of the main 
examples of energy-minimizing systems which can be part of a “case 2” equilibrium state. “Solitons” and 
chaotic solitons are further examples, more suggestive of life and of interesting possible patterns. Many 
biologists have expressed great interest in modeling organisms or patterns within organisms, using the 
concept of soliton. 
 However – organisms clearly are not chaotic solitons. Chaotic solitons, as I have defined them, 
still retain the basic property of absolute stability. Biological organisms can be represented as ensembles of 
localized patterns, like chaotic solitons, but they do not possess absolute stability. There is an interesting 
analogy here: organisms are to chaoitons as optimal control is to robust control, or as economic self-
sufficiency in space (exports equal imports) is to “total closed cycle habitats.” Organisms age and die, to a 
very significant degree; their stability is purely a collective phenomenon, as birth rates exceed death rates 
under ideal conditions. Thus even when we try to abstract away from the specific conditions and forms of 
life we know of here on earth, it is hard to avoid the concepts of replication or autocatalysis even in the 
most abstract mathematical analysis. In fact, it is even hard to avoid some notion of “sexual” versus 
“asexual” replication, defined abstractly by whether the birth rate goes to zero in the limit as population 
density goes to zero. Yet some biologists have proposed cooperative notions of life which cannot be 
reduced to individual organisms in this way; again, there is an interesting analogy – to physics models 
which cannot be analyzed by using perturbation analysis around the usual elementary propagators. 
 
3c. Equilibrium PDF (2c) for Classical and Quantum Fields – and Their 
Equivalence 
 
I started out here by trying to disprove (if possible) a claim by Margala that electricity can be extracted 
from heat, using VLSI technology and field effects. Margala’s proposed chip design was very different 
from the examples in section 2 – but I wanted to evaluate the general issue, in the general case. When I did 
not find a definitive proof for the general case, in a quick but intense search of the literature, I decided to do 
a quick derivation myself, based on methods I developed in [23-25]. For a wide variety of classical field 
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theories, the entropy function turns out to fit “case 2” (equation 5). The classical PDF can be expressed 
equivalently in terms of “field operators,” the mathematical concept which underlies the canonical version 
of quantum field theory (QFT) and quantum statistical thermodynamics (QST) [22, 23,26-30]. It turns out 
that this operator expression appears identical to the usual grand canonical ensemble in operator form used 
in QST. This equivalence between the statistics of classical fields and QST may have enormous theoretical 
implications, as I will discuss after sketching out the derivations. I will start out by reviewing the logic of 
well-known standard results – logic which is far more reliable than conventional wisdom as such. 

All of the empirically supported theories of the physics of our universe – whether classical or 
quantum --- can be expressed in terms of Lagrangians and Lagrange-Euler equations. From the Lagrangian, 
one can work out the “Hamiltonian,” the conserved energy density of the system. 

For simplicity, let us start out by working out the statistics of a simple dynamical system, varying 
over time but not space, whose state s at any time is defined by knowing two real vectors, ϕ and π, in Rn. 
Let us assume that the system is governed by a Hamiltonian function H(ϕ,π). In this case, it is known that 
the dynamics of the system are: 

j
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In order to work out the complete family of possible equilibrium pdf (p(s)), analogous to equation 1, 
we start out by deriving a simple member of that family, dµ(s), analogous to pi in equation 1. This kind 
of very simple equilibrium PDF is called an “invariant probability measure” in the literature on ergodic 
processes. However – it is not necessary at this stage that we scale dµ to make its integral add up to one; 
that comes later, when we divide by a scalar Z, as in equation 1. 

I claim that the following probability measure is such an invariant measure: 
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Intuitively, we might say that “the probability density dµ  is constant or uniform,” but equation 8 is more 
precise. To prove that dµ(s) is an invariant measure, we need only invoke the well-known Fokker-Planck 
equation which gives the dynamics of any probability distribution ρ(s) over time: 
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where v refers to the “velocity” (∂ts) of the system in the space of possible values of s, and div is a standard 
vector function. In our case, we may write equation 9 more concretely as: 
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The condition for ρ(s) to be an equilibrium is that ∂tρ=0; thus the condition for equilibrium is that the big 
summation in equation 10 must be zero. To work this out further, we can break down the sum into parts, 
the part for states si which are components of ϕ, and the part for components in π. This results in the 
equilibrium condition: 
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If we work out the second and fourth terms of this last expression, by substituting in from equations 6 and 
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7, we can see that those terms cancel out immediately, for all possible probability densities ρ(s), for a 
Hamiltonian system. For the particular choice of ρ(s)=dµ(s), the partial derivatives of ρ with respect to ϕi 
and πi are all zero; this guarantees that the overall expression is zero, and that dµ(s) is an equilibrium 
(invariant) probability measure, as claimed. 
 In actuality, it is well-known in the Second Law literature [31] that simple Hamiltonian systems 
like this have this kind of simple equilibrium pdf. This insight is generally applied to the analysis of n 
distinct particles in a particle-based model. But we will take it further.  
 The distribution dµ(s) is only one member of a large family of possible equilibrium probability 
measures for this system. Let us assume that the system possesses exactly m conserved quantities, m 
functions qj(s) which are guaranteed to remain constant over time. We know that m is at least 1, because the 
Hamiltonian itself is one conserved quantity. In this case, there is no interaction at all between the portions 
of the pdf which apply to different subspaces defined by different values of these conserved quantities. We 
may deduce that any pdf of the following form is also an equilibrium pdf: 
 Zdqqfp m /),...,( 1 µ=        (12) 
where f is any nonnegative function, and where Z is the integral over all possible states s of fdµ; in other 
words, Z is that scaling factor which ensures that the integral of pdµ equals 1, as is required for a valid 
probability distribution. (In cases where Z is zero or does not exist, we do not have a valid pdf, except in 
cases where we can use the mathematical theory of tempered distributions to generalize the analysis.)  
 For a single system operating in complete isolation, there is no basis for requiring that f(q1,…,qm) 
must take on the usual Boltzmann form as in equation 1. Conventional thermodynamics deduces this 
restriction by considering the case of multiple systems and making various types of assumptions about 
weak coupling between them. Perhaps those assumptions should also be revisited some day – but for now, 
it is interesting enough to ask what strange new technologies might be possible even within that restriction. 
 Next let us consider a more interesting case, the case of partial differential equations (PDE) over 
Minkowski space, still governed by Lagrange-Euler equations and so on. 
 A wide variety of interesting field equations can be represented by starting from a Hamiltonian 
functional H defined by: 
 H (∫=H ϕ(x), π(x), ∇ϕ(x)) d3x       (13) 

It is possible to approximate such a system by some kind of well-considered finite-element approximation, 
where the space of points x is represented by a discrete grid of points separated by some lattice spacing δ. 
Much of the original derivation of QFT was based on this kind of lattice-based approach [27,32,33]. As δ 
goes to zero, a well-constructed lattice approximation should converge in its predictions – and should 
converge to the continuous field theory. But now consider: if we have such a well-constructed finite 
approximation scheme, based on a Hamiltonian H(δ) and a lattice-based approximation H(δ) to the 
Hamiltonian density, then at each stage of approximation, we still have a discrete Hamiltonian system, 
whose equilibrium pdf are given by equation 12! Thus if we accept the usual Boltzmann form for f, 
as discussed above,  we arrive at a pdf for possible states of the fields defined by: 
 
 Zdqcqcp mm /)...exp( 11 µ−−−=       (14), 
where we may write (roughly): 

 ∏∏
=

=
n

i
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xall

xdxdd
1

)()( πϕµ         (15) 

A truly rigorous formulation of what equation 15 means would have to make use of the theory of functional 
integrals [22,33], but the common-sense meaning is reliable enough. For finite temperatures, the exponent 
in equation 14 keeps this all meaningful. 
 So far, we have essentially just confirmed that we are working with “case 2” as discussed in 
section 3a. This subsection has nothing more to say about extracting electricity from heat.  
 Equations 14 and 15 represent a family of pdf for the possible states S of the fields ϕ(x) and π(x) 
across space. They represent the pdf by explicitly stating the probability function or measure. However, 
there are other equally valid ways to specify or characterize a pdf. For example, probability distributions 
are often characterized by specifying the mean, the variance, the matrix of covariances, the skewness, the 
kurtosis, and all higher-order statistical moments. In [23], I proposed a new way to collect all the statistical 
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moments of a set of classical fields into a single object, an operator in Fock-Hilbert space. (See [23,26] for 
tutorial introductions to operators in Fock-Hilbert space.) To conform with Weinberg [28], I considered the 
general case of classical fields over d-dimensional space; i.e., x∈Rd. Equations 103-107 of [23] define the 
“classical density matrix” ρ by: 
 

SdS
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2ρ ,       (16) 
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22)( pmpw jj +=  ,        (20) 
where “Pr(S)d∞S” refers to the pdf whose statistical moments we are collecting, where aj

+ is a standard 
creation operator (field operator), where |0> is the usual vacuum state of Fock-Hilbert space, and where the 
constant “c” is chosen to match the conventions in Weinberg. The classical density matrix turns out to be 
much easier to use and understand in the example where d=0 [23]. 
 This particular way of collecting the statistical moments together has an extremely important 
property proven in [23]: 
 ,),()),(( >=<ΠΦ πϕρ ggTr n        (21) 
where “g” represents any analytic function of the fields, where gn is the normal form of the corresponding 
field operators, and where the angle brackets refer to the expectation value over the full ensemble of 
possible classical states of the classical fields.  For example, when “g” is the Hamiltonian of the classical 
field, and gn is the (normal form) Hamiltonian operator, equation 21 gives us a way to calculate the 
expected energy of an ensemble of states. Furthermore, equation 16 is really just a way of averaging 
over possible states; for each possible state, equation 21 tells us that gn has the effect of multiplying ρ by 
the function g, in effect. 
 Now I would like to introduce some rough conjectures which probably need cleaning up – but 
probably can be cleaned up to yield extremely important results. 
 First, I would conjecture that the invariant measure dµ of equation 15 corresponds to the 
(unnormalized) classical density matrix I (at least for some choice of the parameter “c”.). A reason to 
expect this is that the off-diagonal terms of ρ represent cross-correlations, while this dµ leads to zero cross-
correlations across different points in space or different field components; also dµ and I are invariant with 
respect to translations in space and such.  
 Next, based on equation 21 and the properties noted in the paragraph which follows it, I would 
conjecture that the equilibrium pdf of equation 14 corresponds to classical density matrices ρ of: 
 ZQcQc mm /)...exp( 11 −−−=ρ       (22) 
where Z is the usual scalar needed to normalize ρ, and where Qi is the normal form field operator 
representing the conserved quantity qi. A reason to expect this is that equation 22 is actually the result of 
multiplying the invariant distribution ρ=I by a normal form operator. It might be necessary in principle to 
take great care with the possibility of noncommuting conserved quantities, or with making sure that this is 
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not the adjoint or dual [25] of the equilibrium ρ; however, practical thermodynamics has not worked much 
with noncommuting conserved quantities, and the basic idea would still be workable in the adjoint 
representation. 
 The startling fact here is that equation 22 corresponds exactly to the family of density matrices 
used as the working foundation of quantum statistical thermodynamics (QST)! It is simply the usual grand 
canonical ensemble! The exact equivalence provides some additional justification for our previous, more 
classical discussion – but it may have larger implications. 
 Before discussing these implications, I should note that equation 21 – while new – is not 
unprecedented. For the special case of electromagnetic fields, similar properties have been known for a 
long time for mixtures of coherent states [29,34]. Walls and Milburn calculate a nonzero “variance” for 
coherent states – but the “variance” they compute is actually a second moment without subtraction of a 
mean. The coherent states they describe actually have a zero “variance” (as a statistician would define 
variance here), and they correspond to definite classical states, as per equation 16. The classic work of 
Coleman [34] and Mandelstam [35] on solitons in the quantum sine-Gordon field theory is all based on the 
normal-form Hamiltonian. The normal-form Hamiltonian is also the basis for all higher-order predictions 
of quantum electrodynamics. Elementary textbooks often stress the difference between Boltzmann statistics 
and Bose-Einstein statistics for individual photon modes, but the grand canonical ensemble operator of 
equation 22 is applied to density operators for the entire global system 
 Equation 22 appears to confirm Einstein’s conjecture, long ago, that the predictions of quantum 
theory could be derived as predictions of the statistical dynamics of classical fields. This would suggest that 
classical field theory might itself be viable as a way of formulating the ultimate laws of physics. If the 
empirical predictions of quantum theory could all be derived as consequences of quantum statistical 
thermodynamics, equation 22 would imply that Einstein was right about this point as well. 
 In actuality, the situation is more complicated. There are two main complications – complications 
involving quantum measurement and complications involving fermionic fields. 
 First let us consider quantum measurement. The usual predictions of QFT are based on combining 
two kinds of calculation: (1) quantum dynamics, which ultimately boils down to predictions for bound 
stable states and predictions for “scattering states” [36] (i.e. equilibrium statistical states assuming a stable 
influx and outflux of particles; and (2) quantum measurement, usually handled by assuming the standard 
Copenhagen matrix projection formalism. The exact correspondence in equation 22 takes care of quantum 
dynamics – but what about quantum measurement?  
 In practical, empirical fields like quantum computing or quantum optics, the usual Copenhagen 
rules are no longer held to be exact in predicting what happens in “measurement objects” like polarizers 
and counters. For precise predictions [29,30], the measurement apparatus itself is represented as a solid 
state object governed by quantum dynamics. In effect, empirical work points us towards the classic Von 
Neumann/Wigner view of quantum measurement, in which true matrix projection only occurs “at infinity,” 
and not in the finite universe of polarizers and brains that we live in. There is no empirical evidence of any 
“privileged objects” like brains being exempt from the usual quantum dynamics. I would conclude that 
empirical evidence now compels us to believe that the Copenhagen “laws” of measurement are really just 
approximations, whose partial validity is a consequence of quantum dynamics and cosmological boundary 
conditions. But if quantum measurement is a consequence of quantum dynamics and cosmological 
boundary conditions, then the same boundary conditions should imply the same measurement probabilities 
for classical fields as well, now that we know classical fields lead to the same predictions as “quantum 
dynamics.” 
 Experts in quantum foundations would immediately ask how to reconcile these conclusions with 
Bell’s Theorem experiments and similar paradoxes. Classical field theories like equation 13 are both 
“local” and “realistic.” The Bell’s Theorem experiments appear to rule out “local realistic” theories of 
physics. But in actuality, they rule out “local causal realistic” theories. There is good reason to believe that 
time-symmetric PDE would not imply the uniformly time-forwards flow of information at all levels of 
physics assumed in the name of “causality” in these theorems. [6, 23-25, 37]. Rather than ruling out PDE, 
these experiments rule out crude “common sense” thinking about time, the same kind of “common sense” 
which was once used to “disprove” special relativity. Einstein’s comments about this kind of “common 
sense” remain as valid today as they were in his time. Section 3e will say more about this issue of 
information flows through time. 
 The careful reader may ask: how did we find an exact classical/quantum correspondence here, 
when we found (small) discrepancies before when comparing classical versus quantum equilibria in another 
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context [24]? The obvious explanation is that we were studying sharper, closed sets of states before, 
whereas here we are studying thermodynamic ensembles.  Before, we might have tried to “explain” 
Planck’s constant by arguing that it goes away when we use “natural” units with h=c=1. But now we are 
pushed into a more satisfactory new theory, in which Planck’s constant represents a kind of temperature 
coefficient for the universe as a whole. This confirms an early speculation by Dirac that Planck’s constant 
might be a kind of emergent quantity. 
 Next let us consider fermionic dynamics. The operator aj

+ in equation 17 is a standard bosonic 
creation operator. Any bosonic quantum field theory whose Hamiltonian fits the form of equation 13 is 
equivalent to the corresponding classical field theory, in the statistical sense described above. But the 
standard model of physics [22] involves a combination of bosonic and fermionic fields. The predictions of 
quantum electrodynamics have been tested to great accuracy, in many types of experiment; classical field 
theories cannot match this experimental data, unless they can somehow reproduce fermionic statistics as 
well as bosonic. How could that be possible? 
 There are three obvious approaches to answering this question. 
 First, there is a mainstream way to answer it, which I do not like. Following Schwinger’s source 
theory[38] or Feynman’s functional integral approach[22], we may postulate “anticommuting classical 
fields.” We may invoke the argument that such fields are somehow well-defined in terms of local 
representations of Clifford algebras. It would then be natural to augment equation 17 by adding terms 
which multiply such fields by fermionic creation operators. We would then end up with “classical field 
theories” in which some of the fields are ordinary continuous fields, while others are “classical 
anticommuting” fields. If we believe that such fields make mathematical sense, then we are home free. If 
not, we are not home free – but neither is Schwinger or Feynman. 
 Second, there is an approach suggested by soliton research [19,34,35] which still seems promising 
to me. One may first try to develop bosonic Lagrangians which replicate (or converge to) the standard 
model of physics. For example, Vachaspati [39,40] has laid out an exciting direction for research, based in 
part on ‘tHooft’s ideas about representing fermions as bound magnetic monopoles (‘tHooft monopoles) or 
dyons. (Schwinger [41] also had suggestions for representing nucleons as bound systems of dyons, which 
may yet be worth revisiting.) The soliton-based approach would allow a classical field theory to reproduce 
all of the predictions of the standard model of physics – but it would also have two important further 
benefits. First, because of the classical/quantum equivalence, there is good reason to believe that these 
kinds of bosonic theories (with solitons) would be mathematically well-defined or “finite,” even without 
regularization or renormalization; thus unlike the standard model, they could explain the masses of 
particles, instead of just hard-wiring the masses into the renormalization procedure. Second, in order to 
unify the standard model with general relativity, it would be good enough and simple enough to “metrify” 
the classical field theory, in exactly the same way that John Wheeler metrified Maxwell’s Laws in 1956 in 
order to develop his “already unified field theory.” 
 Based on the new results here, I am beginning to hope that we may have a third approach worth 
trying as well. It is still too early to know how promising it really is. The idea is that we may reconsider 
classical theories made up of a combination of continuous fields and point particles, as in the old Lorentz 
approach. We may add terms to equation 17 which multiply the “fields” for these point particles (fields 
which are actually Dirac delta functions!) by fermionic creation operators. I have explored this kind of idea 
in the past [42], because fermionic wave functions have a natural match to the statistics of point particles. 
I was not able to do anything useful with it then – but now, as an extension of equation 22 – it might 
provide us with a more elegant and direct and natural way to reproduce the predictions of the standard 
model exactly as it stands today. This would not avoid the need for regularization and renormalization, 
because even classical Lorentzian theories require renormalization. It may not be credible as an ultimate 
theory of physics. Nevertheless, it may give us the simplest, most direct way to explain all the experiments 
predicted by the standard model of physics. It may or may not be compatible with Wheeler’s procedures for  
unifying classical field theories with gravity. There are some close relations between this approach and 
earlier work by Yasue and others [43], but here we are not assuming any random disturbance terms in the 
classical field theory. 
 
3d. Greffet (2d,2e), Popovic (2f) and the Technology to Combine Them 
 
Greffet’s achievements are the key data which pushed me into the new heresy proposed in this paper. Yet 
Greffet’s work, and Popovic’s, stand on their own. There is little I can add to the citations and the 
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discussion of sections 2d, 2e and 2f. It is all very straightforward, after we reconsider all the theoretical 
prejudices which might have blocked our ability to see the obvious. 
 Greffet’s design was certainly based on crafting a potential field, V(x) (with consideration of other 
terms as well), and on predicting the behavior of his system by considering the eigenvectors of the resulting 
Hamiltonian. These eigenvectors, in turn, led to the interesting new wave functions and statistical 
correlations which are not spatially localized. There is absolutely no contradiction with the principles of 
quantum statistical thermodynamics as embodied in equation 22. 
 Some of my comments in sections 2d, 2e and 2f were based on questions I posed to leading 
specialists in these areas. I would be happy to acknowledge their help in greater detail, when and if they 
deem the time suitable. In many ways, I regret being compelled to publish a view so very far away from 
today’s conventional wisdoms; yet, as some of those others have told me, the issues here are far too 
important to ignore or to judge n a hasty way. Of course, this paper is not intended as a kind of final 
judgment, even in my personal views. It is intended as a kind of starting point. 
 
3e. Backwards Through Time? 
 
Section 2g posed the question: could we possibly hope to create a time-reversed version of the kind of two-
layer chip discussed in section 2f? To explain this question, we need to review a few basic issues regarding 
time. 
 Section 3c has given a condensed summary of the backwards time interpretation of quantum 
mechanics, which is discussed at length in [5,6,23-25,37,44], and many other papers. Many physicists who 
are not yet ready to return to time-symmetric PDE would still accept the idea that quantum measurement 
should be derived from quantum dynamics (e.g., a Schrodinger equation) and boundary conditions. But the 
Schrodinger equation is also time-symmetric in nature. The Copenhagen measurement rules are grossly 
asymmetric in time. Therefore, the only way to explain the asymmetry in measurement is to refer back to 
the time-asymmetry of the boundary conditions for our earth (and earth orbit, etc.), the place where we 
humans have done our physics experiments. 
 In [23], we proposed that the time-asymmetry in everyday quantum measurement is a consequence 
of the forwards arrow of time which mostly dominates our macroscopic life. (Probably Walls and 
Milburn[29] would say that this is not a speculation; for practical purposes, their book actually proves it.) 
That arrow of time, in turn, is mainly due to a straightforward boundary condition to our earth: a steady 
influx of ordinary free energy from the sun. Ordinary free energy is a kind of “improbable state” coming to 
us from the past which gives us the power to change the future. Yet logically, the time-symmetry of PDE 
and of quantum dynamics tells us that there formally exists a reversed-time mirror image of ordinary free 
energy. This may be called “backwards-time free energy.” We cannot easily build devices to influence or 
communicate with the past , because we do not have access to a source of backwards-time free energy. 
 However… what if we really could build devices to convert heat to forwards-time free energy? 
Could we somehow time-reverse such designs, so as to extract backwards-time free energy instead? How 
would we even test such a possibility? If the answer to the first question should turn out to be “yes,” then it 
would make sense to think hard about the two follow-on questions. 
 Even if we cannot extract free energy from heat, there are a number of other ways we might try to 
build technologies based on the backwards-time approach. For example, Huw Price has argued very 
effectively [4,5] that the original time-symmetric version of Hawking’s theory of cosmology is more likely 
to be true than the later politically-corrected version. If Price is right, it should be possible to engineer real 
optoelectronic systems to detect (and even extract energy from) the backwards-time photons emitted from 
regions in the future where the arrow of time runs backwards. Even a tiny amount of backwards-time free 
energy might be interesting to work with. However, the technical details of such possibilities and of related 
quantum measurement experiments go well beyond the scope of this paper. 
 

References 
 
1. Jean-Jacques Greffet. Remi Carminati, Karl Joulain, Jean-Philipe Mulet, Stephanie Mainguy & Yong 
Chen, Coherent emission of light by thermal sources. Nature 416, 61 - 64 (07 March 2002);  
 

 12



2. Carminati R., Greffet J.J. Near-field effects in spatial coherence of thermal sources. Phys. Rev.Lett. 82, 
p.1660-1663, 1999. 
 
3. Joseph A. Hagerty, Florian B. Helmbrecht, William H. McCalpin, Regan Zane and Zoya B. Popovic, 
Recycling ambient microwave energy with broad-band rectenna arrays, IEEE Transactions on Microwave 
Theory and Techniques. Vol. 52, No. 3, March 2004. 
http://nemes.colorado.edu/microwave/papers/2004/MTT_JHfhWMrzZP_Mar04.pdf
 
4. Ilya Prigogine, Mind and matter: beyond the Cartesian dualism. In K.Pribram, ed, Origins: Brain and 
Self-Organization, Erlbaum, 1994. 
 
5 Huw Price, Cosmology, time’s arrow, and that old double standard. In Savitt Steven F. Savitt (ed), Time’s 
Arrow Today:Recent Physical and Philosophical Work on the Arrow of Time, Cambridge U. Press, 1997. 
 
6. Huw Price, Time's Arrow & Archimedes' Point: New Directions for the Physics of Time. Oxford 
University Press, 1996. 
 
7 A. M. Song, A. Lorke, A. Kriele, & J. P. Kotthaus, Nonlinear electron transport in an asymmetric 
microjunction: A ballistic rectifier. Physical Review Letters, Vol. 80, No. 17, April 1998. 
 
8. R.K. Belew & Mitchell, M. ,eds. Adaptive Individuals in Evolving Populations: Models and Algorithms. 
Reading, MA: Addison-Wesley, 1996 
 
9. Ilya Prigogine, Introduction to Thermodynamics of Irreversible Processes, Wiley,  
1968 
 
10. James Gleick, Chaos: Making a New Science.Viking Penguin, 1987. 
 
11. A.J.Lichtenberg and M.A.Lieberman, Regular and Chaotic Dynamics, Second Edition, Springer-
Verlag, 1992. 
 
12. P.Werbos, Self-organization: Re-examining the basics and an alternative to the Big Bang,  in 
K.Pribram, ed, Origins: Brain and Self-Organization, Erlbaum (1994) 
 
13 John A. Wheeler, Geometrodynamics and the issue of the final state. In C. DeWitt and B.S. DeWitt, 
eds., Relativity, Groups and Topology. New York: Gordon and Breach, 1964. 
 
14. Seth Lloyd, Quantum-mechanical Maxwell’s demon, Physical Review A,Vol. 56, No. 5, p. 3374-3382, 
1997.  

15. A.E. Allahverdyan and Th.M. Nieuwenhuizen ,Minimal work principle: proof and counterexamples, 
cond-mat 0408537. See also cond-mat 0110422, and see Daniel P. Sheehan, ed., Quantum Limits To The 
Second Law: First International Conference on Quantum Limits to the Second Law. AIP Conference 
Proceedings 643, American Institute of Physics, 2002. 
16. Karl Kordesch and Guenter Simader, Fuel Cells and Their Applications. Wiley, 1996. 

17. Paul J. Werbos, Reassessing the global energy future: How Can We Achieve Sustainability?. In Jerome 
Glenn and Theodore Gordon (eds), State of the Future 2004, CD ROM Appendix. Washington. D.C.: 
American Council for the United Nations University, 2004. (www.stateofthefurture.org). 
 
18 Richard L. Fork, Physics of optical switching, Physical Review A 26, p.2049-2064, 1982. 
 
19 V.G.Makhankov, Yu.P.Rybakov and V.I.Sanyuk,The Skyrme Model, Springer-Verlag, 1994. 
 

 13

http://nemes.colorado.edu/microwave/papers/2004/MTT_JHfhWMrzZP_Mar04.pdf


20 .R.Rajaraman, Some nonperturbative semiclassical methods in quantum field theory, Phys. Reports, 
Vol. 21, No.5, p.227-317 (1975). 
 
21 P.Werbos, New Approaches to Soliton Quantization and Existence for Particle Physics, 
 xxx.lanl.gov/abs/patt-sol/9804003 
 
22  J.Zinn-Justin, Quantum Field Theory and Critical Phenomena, Third Edition, Oxford  University Press 
(Clarendon) , Oxford, 1996. 
 
23 P. Werbos, Classical ODE and PDE Which Obey Quantum Dynamics, Int’l J. Bifurcation and Chaos, 
Vol. 12, No. 10 (October 2002), p. 2031-2049. Slightly updated as quant-ph 0309031. 
 
24 Paul J. Werbos and Ludmilla Dolmaova Werbos, Equivalence of Classical Statistics and Quantum 
Dynamics of Well-Posed Bosonic Field Theories, Problems of Nonlinear Analysis in Engineering Systems 
(an IFNA-ANS journal), No.3, Vol.9, 2003. quant-ph 0309087. 
 
25 P.Werbos and L. Dolmatova, The Backwards Time Interpretation of Quantum Mechanics Revisited With 
Experiment, quant-ph 0008036 
 
26 Richard P. Feynman, Statistical Mechanics: A Set of Lectures. Reading, MA: W.A. Benjamin, 1972. 
 
27 Julian Schwinger, ed., Selected Papers on Quantum Electrodynamics. New York: Dover, 1958. 
 
28 S. Weinberg, The Quantum Theory of Fields. Cambridge U. Press, 1995 
 
29 D.F.Walls and G.F. Milburn, Quantum Optics (Springer, New York, 1994). 
 
30 Howard J. Carmichael, Statistical Methods in Quantum Optics1: Master Equations and Fokker-Planck 
Equations. Berlin: Springer, 1999. 
 
31 P. A. Skordos, Phys. Rev. E 48, p.777, 1993 
 
32. F.Mandl, Introduction to Quantum Field Theory, Wiley, 1959. 
 
33. James Glimm & Arthur Jaffe, Quantum Physics: A Functional Integral Point of View. New York: 
Springer, 1981. 
 
34 Sidney Coleman, Quantum Sine-Gordon equation as the massive Thirring model, Phys Rev D,  

1975, 11:2088 
 
35 S. Mandelstam, Phys. Rev D, Vol. 11, No. 10, p.3026-3030, (1975). 
 
36. Freeman J. Dyson, The S matrix in quantum electrodynamics, Physical Review, Vol. 75, No. 11, 
p.1736-1755, June 1, 1949. 
 
37. P.Werbos, An approach to the realistic explanation of quantum mechanics, Nuovo Cimento Letters, 
Vol.29B, Sept. 8,1973.  
 
38 J. Schwinger, Particles, Sources and Fields, Addison-Wesley, 1970. 
 
39 Tanmay Vachaspati, On a dual standard model. Hep-ph 0204106. 
 
40 Levon Pogosian, Daniele A. Steer, Tanmay Vachaspati, Triplication of SU(5) monopoles. 
Phys.Rev.Lett. 90 (2003) 061801 
 
41 J.Schwinger, Sources and magnetic charge, Physical Review, Vol. 173, No.5, p.1536-1544,  

 14



  Sept.25,1968 
 
42 P. Werbos, From the termite mound to the stars: Meditations on discussions with Ilya Prigogine, 
Problems of Nonlinear Analysis in Engineering Systems, No.3(19(, vol. 9, 2003. Also Posted as q-bio.PE 
0311007 at arXiv.org (q-bio archives).. 
 
43. Tetsuya Misawa and Kunio Yasue, Canonical stochastic dynamical systems, J. Math. Phys. 28(11) 
p.2569 (01 Nov 1987) 
 
44 P.Werbos, Bell’s theorem: the forgotten loophole and how to exploit it, in M.Kafatos, ed.,  Bell’s 
Theorem, Quantum Theory and Conceptions of the Universe.  Kluwer, 1989. 
 

 15


	Abstract
	References

	15. A.E. Allahverdyan and Th.M. Nieuwenhuizen ,Minimal work 
	17. Paul J. Werbos, Reassessing the global energy future: Ho

