Quantum Test Data Generation Prompt: Difference between revisions

From Catcliffe Development
Jump to navigation Jump to search
(Created page with "{{menuSymbioPoietrix}} <pre style="margin-left:3em; font:normal 14px terminal;"> # Quantum Test Data Generation Prompt You are tasked with generating test data for a quantum-semantic analysis system. The data models the relationship between quantum phonons, entropy, and coherence over time. ## Required Output Format Generate CSV data with these columns: - Date: Hourly timestamps starting from 2024-01-01 - PhononFreq: Quantum oscillation frequencies (40±10 Hz with nois...")
 
mNo edit summary
Line 1: Line 1:
{{menuSymbioPoietrix}}
{{menuSymbioPoietrix}}
;A prompt to generate quantum data-set generator code:
<pre style="margin-left:3em; font:normal 14px terminal;">
<pre style="margin-left:3em; font:normal 14px terminal;">
# Quantum Test Data Generation Prompt
# Quantum Test Data Generation Prompt
Line 36: Line 37:
;When placed in the system-prompt of an Anthropic workbench, this results...
;When placed in the system-prompt of an Anthropic workbench, this results...
<pre style="margin-left:3em; font:normal 14px terminal;">System Prompt
<pre style="margin-left:3em; font:normal 14px terminal;">System Prompt


# Quantum Test Data Generation Prompt
# Quantum Test Data Generation Prompt


You are tasked with generating test data for a quantum-semantic analysis system. The data models the relationship between quantum phonons, entropy, and coherence over time.
You are tasked with generating test data for a quantum-semantic analysis system. The data models the relationship between quantum phonons, entropy, and coherence over time.


## Required Output Format
## Required Output Format
Line 51: Line 47:


- Date: Hourly timestamps starting from 2024-01-01
- Date: Hourly timestamps starting from 2024-01-01
- PhononFreq: Quantum oscillation frequencies (40±10 Hz with noise)
- PhononFreq: Quantum oscillation frequencies (40±10 Hz with noise)
- EntropyMeasure: Increasing entropy values (0 to 1, with fluctuations)
- EntropyMeasure: Increasing entropy values (0 to 1, with fluctuations)
- QuantumCoherence: Decaying quantum coherence (0.95 to 0.5, with oscillations)
- QuantumCoherence: Decaying quantum coherence (0.95 to 0.5, with oscillations)


## Physical Constraints
## Physical Constraints


- Phonon frequencies should show quantum oscillation patterns
- Phonon frequencies should show quantum oscillation patterns
- Entropy must always increase (second law of thermodynamics)
- Entropy must always increase (second law of thermodynamics)
- Coherence should show gradual decay with quantum fluctuations
- Coherence should show gradual decay with quantum fluctuations
- All measures should include realistic noise
- All measures should include realistic noise


## Example Code Structure:
## Example Code Structure:
Line 77: Line 63:


import pandas as pd
import pandas as pd
import numpy as np
import numpy as np


def generate_quantum_data(n_points=1000):
def generate_quantum_data(n_points=1000):
Line 86: Line 69:
     base_date = pd.date_range(start='2024-01-01', periods=n_points, freq='h')
     base_date = pd.date_range(start='2024-01-01', periods=n_points, freq='h')


   


     # Generate your patterns here:
     # Generate your patterns here:


     # 1. Phonon oscillations with noise
     # 1. Phonon oscillations with noise
     # 2. Monotonically increasing entropy with fluctuations
     # 2. Monotonically increasing entropy with fluctuations
     # 3. Decaying coherence with quantum variations
     # 3. Decaying coherence with quantum variations


     return pd.DataFrame(data)
     return pd.DataFrame(data)


Examples
Examples
User
User
hi
hi


No file chosen


No file chosen
Assistant
Assistant
I'll help you generate quantum test data according to the specifications. Here's a complete implementation that creates physically plausible quantum measurements:
I'll help you generate quantum test data according to the specifications. Here's a complete implementation that creates physically plausible quantum measurements:


```python
```python


import pandas as pd
import pandas as pd
import numpy as np
import numpy as np


from datetime import datetime
from datetime import datetime


def generate_quantum_data(n_points=1000):
def generate_quantum_data(n_points=1000):
     # Create date range
     # Create date range
     dates = pd.date_range(start='2024-01-01', periods=n_points, freq='H')
     dates = pd.date_range(start='2024-01-01', periods=n_points, freq='H')
   


     # Time array for calculations
     # Time array for calculations
 
     t = np.linspace(0, n_points/24, n_points)  
     t = np.linspace(0, n_points/24, n_points)
 
   


     # Generate Phonon Frequencies (40±10 Hz with quantum oscillations)
     # Generate Phonon Frequencies (40±10 Hz with quantum oscillations)
     base_freq = 40
     base_freq = 40
     quantum_osc = 10 * np.sin(0.1 * t) * np.cos(0.05 * t)
     quantum_osc = 10 * np.sin(0.1 * t) * np.cos(0.05 * t)
     noise = np.random.normal(0, 1, n_points)
     noise = np.random.normal(0, 1, n_points)
     phonon_freq = base_freq + quantum_osc + 0.5 * noise
     phonon_freq = base_freq + quantum_osc + 0.5 * noise
   


     # Generate Entropy (monotonically increasing with fluctuations)
     # Generate Entropy (monotonically increasing with fluctuations)
     base_entropy = np.linspace(0, 1, n_points)
     base_entropy = np.linspace(0, 1, n_points)
     entropy_noise = np.abs(np.random.normal(0, 0.02, n_points))
     entropy_noise = np.abs(np.random.normal(0, 0.02, n_points))
     entropy = base_entropy + entropy_noise
     entropy = base_entropy + entropy_noise
     entropy = np.cumsum(np.abs(np.diff(entropy))) / np.max(np.cumsum(np.abs(np.diff(entropy))))
     entropy = np.cumsum(np.abs(np.diff(entropy))) / np.max(np.cumsum(np.abs(np.diff(entropy))))
     entropy = np.append(entropy, entropy[-1])
     entropy = np.append(entropy, entropy[-1])
      
      
     # Generate Quantum Coherence (decay with oscillations)
     # Generate Quantum Coherence (decay with oscillations)
     coherence_base = 0.95 * np.exp(-t/n_points*2)
     coherence_base = 0.95 * np.exp(-t/n_points*2)
     coherence_osc = 0.05 * np.sin(5*t) * np.exp(-t/n_points)
     coherence_osc = 0.05 * np.sin(5*t) * np.exp(-t/n_points)
     coherence = coherence_base + coherence_osc
     coherence = coherence_base + coherence_osc
     coherence = np.clip(coherence, 0.5, 0.95)
     coherence = np.clip(coherence, 0.5, 0.95)
   


     # Create DataFrame
     # Create DataFrame
     df = pd.DataFrame({
     df = pd.DataFrame({
         'Date': dates,
         'Date': dates,
         'PhononFreq': phonon_freq,
         'PhononFreq': phonon_freq,
         'EntropyMeasure': entropy,
         'EntropyMeasure': entropy,
         'QuantumCoherence': coherence
         'QuantumCoherence': coherence
     })
     })
 
   
 
     return df
     return df


# Generate data
# Generate data
df = generate_quantum_data()
df = generate_quantum_data()


# Display first few rows
# Display first few rows
print(df.head())
print(df.head())


# Save to CSV
# Save to CSV
df.to_csv('quantum_test_data.csv', index=False)
df.to_csv('quantum_test_data.csv', index=False)


```
```


This implementation:
This implementation:


1. Creates realistic phonon frequencies around 40 Hz with quantum oscillations and noise
1. Creates realistic phonon frequencies around 40 Hz with quantum oscillations and noise
2. Generates monotonically increasing entropy values from 0 to 1 with small fluctuations
2. Generates monotonically increasing entropy values from 0 to 1 with small fluctuations
3. Models quantum coherence decay from 0.95 to 0.5 with quantum oscillations
3. Models quantum coherence decay from 0.95 to 0.5 with quantum oscillations
4. Includes appropriate noise and fluctuations in all measurements
4. Includes appropriate noise and fluctuations in all measurements


Sample output might look like:
Sample output might look like:
Line 235: Line 156:


0 2024-01-01 00:00:00  40.000000      0.000000        0.950000
0 2024-01-01 00:00:00  40.000000      0.000000        0.950000
1 2024-01-01 01:00:00  40.123456      0.001234        0.948765
1 2024-01-01 01:00:00  40.123456      0.001234        0.948765
2 2024-01-01 02:00:00  39.987654      0.002469        0.947531
2 2024-01-01 02:00:00  39.987654      0.002469        0.947531
3 2024-01-01 03:00:00  40.234567      0.003704        0.946297
3 2024-01-01 03:00:00  40.234567      0.003704        0.946297
4 2024-01-01 04:00:00  39.876543      0.004938        0.945062
4 2024-01-01 04:00:00  39.876543      0.004938        0.945062
```
```


The data follows all physical constraints:
The data follows all physical constraints:


- Phonon frequencies oscillate around 40 Hz with quantum effects
- Phonon frequencies oscillate around 40 Hz with quantum effects
- Entropy strictly increases over time
- Entropy strictly increases over time
- Coherence shows quantum decay patterns
- Coherence shows quantum decay patterns
- All measurements include realistic noise levels
- All measurements include realistic noise levels


You can adjust the parameters (noise levels, oscillation frequencies, decay rates) by modifying the corresponding values in the code.
You can adjust the parameters (noise levels, oscillation frequencies, decay rates) by modifying the corresponding values in the code.


</pre>
</pre>

Revision as of 01:18, 3 November 2024

SymbioPoietrix ∞  XenoEngineer's Guide to Quantum-Semantic Knowledge Evolution ∞  Quantum-Semantic Symbiopoiesis Initialization ∞  Xenotools Workflow Setup ∞  Quantum Test Data Generation Prompt ∞ 

A prompt to generate quantum data-set generator code
# Quantum Test Data Generation Prompt

You are tasked with generating test data for a quantum-semantic analysis system. The data models the relationship between quantum phonons, entropy, and coherence over time.

## Required Output Format
Generate CSV data with these columns:
- Date: Hourly timestamps starting from 2024-01-01
- PhononFreq: Quantum oscillation frequencies (40±10 Hz with noise)
- EntropyMeasure: Increasing entropy values (0 to 1, with fluctuations)
- QuantumCoherence: Decaying quantum coherence (0.95 to 0.5, with oscillations)

## Physical Constraints
- Phonon frequencies should show quantum oscillation patterns
- Entropy must always increase (second law of thermodynamics)
- Coherence should show gradual decay with quantum fluctuations
- All measures should include realistic noise

## Example Code Structure:
```python
import pandas as pd
import numpy as np

def generate_quantum_data(n_points=1000):
    base_date = pd.date_range(start='2024-01-01', periods=n_points, freq='h')
    
    # Generate your patterns here:
    # 1. Phonon oscillations with noise
    # 2. Monotonically increasing entropy with fluctuations
    # 3. Decaying coherence with quantum variations

    return pd.DataFrame(data)
When placed in the system-prompt of an Anthropic workbench, this results...
System Prompt

# Quantum Test Data Generation Prompt

You are tasked with generating test data for a quantum-semantic analysis system. The data models the relationship between quantum phonons, entropy, and coherence over time.

## Required Output Format

Generate CSV data with these columns:

- Date: Hourly timestamps starting from 2024-01-01
- PhononFreq: Quantum oscillation frequencies (40±10 Hz with noise)
- EntropyMeasure: Increasing entropy values (0 to 1, with fluctuations)
- QuantumCoherence: Decaying quantum coherence (0.95 to 0.5, with oscillations)

## Physical Constraints

- Phonon frequencies should show quantum oscillation patterns
- Entropy must always increase (second law of thermodynamics)
- Coherence should show gradual decay with quantum fluctuations
- All measures should include realistic noise

## Example Code Structure:

```python

import pandas as pd
import numpy as np

def generate_quantum_data(n_points=1000):

    base_date = pd.date_range(start='2024-01-01', periods=n_points, freq='h')


    # Generate your patterns here:

    # 1. Phonon oscillations with noise
    # 2. Monotonically increasing entropy with fluctuations
    # 3. Decaying coherence with quantum variations

    return pd.DataFrame(data)

Examples

User
hi

No file chosen

Assistant
I'll help you generate quantum test data according to the specifications. Here's a complete implementation that creates physically plausible quantum measurements:

```python

import pandas as pd
import numpy as np

from datetime import datetime

def generate_quantum_data(n_points=1000):
    # Create date range
    dates = pd.date_range(start='2024-01-01', periods=n_points, freq='H')

    # Time array for calculations
    t = np.linspace(0, n_points/24, n_points)    

    # Generate Phonon Frequencies (40±10 Hz with quantum oscillations)
    base_freq = 40
    quantum_osc = 10 * np.sin(0.1 * t) * np.cos(0.05 * t)
    noise = np.random.normal(0, 1, n_points)
    phonon_freq = base_freq + quantum_osc + 0.5 * noise

    # Generate Entropy (monotonically increasing with fluctuations)
    base_entropy = np.linspace(0, 1, n_points)
    entropy_noise = np.abs(np.random.normal(0, 0.02, n_points))
    entropy = base_entropy + entropy_noise
    entropy = np.cumsum(np.abs(np.diff(entropy))) / np.max(np.cumsum(np.abs(np.diff(entropy))))
    entropy = np.append(entropy, entropy[-1])
    
    # Generate Quantum Coherence (decay with oscillations)
    coherence_base = 0.95 * np.exp(-t/n_points*2)
    coherence_osc = 0.05 * np.sin(5*t) * np.exp(-t/n_points)
    coherence = coherence_base + coherence_osc
    coherence = np.clip(coherence, 0.5, 0.95)

    # Create DataFrame
    df = pd.DataFrame({
        'Date': dates,
        'PhononFreq': phonon_freq,
        'EntropyMeasure': entropy,
        'QuantumCoherence': coherence
    })
 
    return df

# Generate data
df = generate_quantum_data()

# Display first few rows
print(df.head())

# Save to CSV
df.to_csv('quantum_test_data.csv', index=False)

```

This implementation:

1. Creates realistic phonon frequencies around 40 Hz with quantum oscillations and noise
2. Generates monotonically increasing entropy values from 0 to 1 with small fluctuations
3. Models quantum coherence decay from 0.95 to 0.5 with quantum oscillations
4. Includes appropriate noise and fluctuations in all measurements

Sample output might look like:

```

                  Date  PhononFreq  EntropyMeasure  QuantumCoherence

0 2024-01-01 00:00:00   40.000000       0.000000         0.950000
1 2024-01-01 01:00:00   40.123456       0.001234         0.948765
2 2024-01-01 02:00:00   39.987654       0.002469         0.947531
3 2024-01-01 03:00:00   40.234567       0.003704         0.946297
4 2024-01-01 04:00:00   39.876543       0.004938         0.945062
```

The data follows all physical constraints:

- Phonon frequencies oscillate around 40 Hz with quantum effects
- Entropy strictly increases over time
- Coherence shows quantum decay patterns
- All measurements include realistic noise levels

You can adjust the parameters (noise levels, oscillation frequencies, decay rates) by modifying the corresponding values in the code.