D. Edward Mitchell 16:00, 14 April 2020 (UTC) Hello World!    groupKOS Developer Share —usually UNDER CONSTRUCTION

A Novel Design of Static Electrostatic Generator for High Voltage Low Power Applications Based on Electric Field Manipulation by Area Geometric Difference

From groupKOS Developer Share
Jump to navigation Jump to search
2019/02/28
Alharbi, Hosam; Khalid, Muhammad; Abido, Mohammad

A Novel Design of Static Electrostatic Generator for High Voltage Low Power Applications Based on Electric Field Manipulation by Area Geometric Difference - Scientific Figure on ResearchGate.

Available from: https://www.researchgate.net/figure/Internal-construction-of-the-proposed-static-electrostatic-generator-SEG_fig1_331435906 [accessed 7 Feb, 2020]
Local copy: File:A Novel Design of Static Electrostatic Generator f.pdf

Internal construction of the proposed static electrostatic generator (SEG).
Internal construction of the proposed static electrostatic generator (SEG).

Abstract

An electrostatic generator is an electromechanical device that produces static charges at high voltage and low current. This technology is mature enough, as it has existed for many centuries. Nevertheless, the working principle of most of the commonly used electrostatic generators is still based on typical mechanical methods, which consequently makes them bulky and limits their controllability on the generated charges, e.g., Van de Graaff generator that uses the friction between two different materials to generate electrostatic charges. In this paper, a novel design of a static electrostatic generator (SEG) is presented based on a completely different idea compared to existing electrostatic generators, which offers several potential benefits. The idea originates from the study of a parallel plates capacitor—for instance, if a voltage is applied to two plates of a capacitor, then according to Gauss’s law, both of the plates must have an equal and opposite charge. Suppose one of the plates has a different geometry, with a shorter length than the other, then the number of the charges on both plates will not be equal. Thus, by manipulating the geometrical area of the device, a different number of charges will be generated on both metal conductors. Therefore, a different number of charges are generated on both conductors; hence, by connecting both conductor plates of the capacitance, excess charges will remain on the device. The proposed idea was assessed with computer simulations using finite element and finite difference methods for a variety of different scenarios to determine the optimal design of the proposed device. The device offers several advantages over traditional electrostatic generators, such as that it can generate either positive or negative charges by merely reversing the polarity of the DC source; additionally, it is very simple, lightweight, and easy to manufacture. In particular, the principal advantage of the proposed device is that it is a static one, and no mechanical movement is required to produce charges. Further, the design is general enough and scalable. The simulation results demonstrate the performance of the proposed device.

Field interaction of the proposed SEG.

Figure 2. Field interaction of the proposed SEG.

Full articles at Reasearchgate.com